ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

真的能远距离传送人类吗? – 译学馆
未登陆,请登陆后再发表信息
最新评论 (0)
播放视频

真的能远距离传送人类吗?

Will we ever be able to teleport? - Sajan Saini

远距传动可能吗?
Is teleportation possible?
棒球可能转变成无线电一样的东西
Could a baseball transform intosomething like a radio wave,
经过建筑之间的穿梭以及角落间的弹射
travel through buildings, bounce around corners,
最终又转变为棒球吗?
and change back into a baseball?
惊人的是 多亏量子力学 这个答案是肯定的
Oddly enough, thanks to quantum mechanics, the answer might actually be yes.
至少是可能的
Sort of.
以下就是大概原理
Here’s the trick.
棒球本身不能通过无线电波发射
The baseball itself couldn’tbe sent by radio,
但是相关信息是可以的
but all the information about it could.
在量子物理中 原子和电子
In quantum physics, atoms and electrons
具有一系列显著的属性
are interpreted as a collectionof distinct properties,
比如 位置 动力 以及固有自旋
for example, position, momentum, and intrinsic spin.
这些属性的值构成了粒子
The values of these propertiesconfigure the particle,
赋予了它量子态的参数
giving it a quantum state identity.
如果两个电子有着相同的量子态
If two electrons havethe same quantum state,
那么它们就是一样的
they’re identical.
简单来说
In a literal sense,
我们的棒球可以认为是众多量子态的集合
our baseball is defined by a collective quantum state
因为它由许多原子组成的
resulting from its many atoms.
如果这些量子态的信息可以在波士顿被读取出来
If this quantum state informationcould be read in Boston
之后再向全球传送
and sent around the world,
那么相同的化学元素的原子能接收信息
atoms for the same chemical elements could have this information
并在班加罗尔刻印
imprinted on them in Bangalore
之后再仔细地组装
and be carefully directed to assemble,
成为那个相同的棒球
becoming the exact same baseball.
但有个问题
There’s a wrinkle though.
量子态不是那么容易测量的
Quantum states aren’t so easy to measure.
量子物理中的不定性原理
The uncertainty principlein quantum physics
表示 粒子的位置和动力
implies the position and momentumof a particle
无法同时被测量
can’t be measured at the same time.
测量电子准确位置的最简易方法
The simplest way to measurethe exact position of an electron
需要从电子中打出光的粒子 也就是光子
requires scattering a particle of light,a photon, from it,
然后再由显微镜接收光子
and collecting the light in a microscope.
但是打出光子的过程会以无法预测的方式改变电子的动量
But that scattering changes the momentum of the electron in an unpredictable way.
这样 我们就失去之前动量信息了
We lose all previous informationabout momentum.
在某种程度上 量子信息是脆弱的
In a sense,quantum information is fragile.
测量它会引起它的改变
Measuring the information changes it.
所以我们如何在不破坏信息的前提下 全部读取信息
So how can we transmit something we’re
之后再传送呢?
not permitted to fully read without destroying it?
答案可以在量子纠缠的奇怪现象中找到
The answer can be found in the strange phenomena of quantum entanglement.
“纠缠”出自早期的量子物理
Entanglement is an old mystery
是个古老的谜
from the early days of quantum physics
到目前都没有完全弄懂
and it’s still not entirely understood.
两个电子之间的纠缠导致
Entangling the spin of two electronsresults in an influence
它们之间的联系超越了距离
that transcends distance.
测量一个电子的旋转
Measuring the spin of the first electron determines
就相当于测量了第二个电子的
what spin will measure for the second,
不管它们之间是有一英里远或是一光年远
whether the two particles are a mile or a light year apart. Somehow,
不管怎样 第一个电子的量子态信息
informationabout the first electron’s quantum state,
也叫数据的量子比特
called a qubit of data,
影响着它的搭档 除非它们之间跨越干扰空间
influences its partner without transmission across the intervening space.
爱因斯坦和他的同事将这个奇怪的交流称为
Einstein and his colleagues calledthis strange communcation
跨越距离的奇异行为
spooky action at a distance.
尽管两个粒子间的纠缠看起来
While it does seem that entanglementbetween two particles
能促使跨越距离的自发量子比特的传递
helps transfer a qubit instantaneouslyacross the space between them,
但是 还有个隐情
there’s a catch.
这种互动开始时 两个粒子一定要在一起
This interaction must begin locally.
在其中一个电子被转移到新地方之前
The two electrons must be entangledin close proximity
这两个电子必须在很近的地方发生纠缠
before one of them is transportedto a new site.
就自身来说 量子纠缠并不是远距传输
By itself, quantum entanglementisn’t teleportation.
为了完成传输
To complete the teleport,
我们需要一个数码信息来让接收方接收并转译出来
we need a digital message to help interpret the qubit at the receiving end.
通过测量第一个粒子 我们得到两个字节的数据
Two bits of data created by measuringthe first particle.
这些数据字节一定要由一个传统的通道传送
These digital bits must be transmittedby a classical channel
这个通道受到光速的限制 也就是无线电
that’s limited by the speed of light, radio,
微波 或可能是纤维光
microwaves, or perhaps fiberoptics.
当我们测量粒子的数据信息时
When we measure a particlefor this digital message,
我们破环了它的量子信息
we destroy its quantum information,
意味着从波士顿开始 这个棒球就消失了
which means the baseball must disappearfrom Boston
更别提还要把他传输到班加罗尔了
for it to teleport to Bangalore.
多亏不确定性原理
Thanks to the uncertainty principle,
传输只是传递两个城市间的棒球信息
teleportation transfers the information about the baseball
而永不会复制信息
between the two citiesand never duplicates it.
所以理论上讲 我们可以传送物件 甚至人
So in principle, we could teleportobjects, even people,
但是当前
but at present,
看起来 我们不太可能测量巨大物件上的
it seems unlikely we can measure the quantum states
万亿级数量或是更多的原子的量子态
of the trillion trillion or more atomsin large objects
然后再在另个地方创造出它们
and then recreate them elsewhere.
这个任务的复杂度和所需的能量都是巨大的
The complexity of this taskand the energy needed is astronomical.
目前 我们可以有把握地传输单个的电子和原子
For now, we can reliably teleportsingle electrons and atoms,
这个技术可以用于未来的量子电脑
which may lead to super-secureddata encryption
有着非常高安全度的数据加密
for future quantum computers.
量子传输的哲学含义很微妙
The philosophical implicationsof quantum teleportation are subtle.
被传输的物体实际上并没有像真实存在的物质一样 在空间上被转移
A teleported object doesn’t exactlytransport across space
也没有像不可触及到的信息那样
like tangible matter, nor does it exactly transmit across space,
在空间中被传递
like intangible information.
看起来两者都有点
It seems to do a little of both.
量子物理给我们提供了一个奇怪的新视野
Quantum physics gives usa strange new vision
把我们宇宙中的所有事物看成脆弱的信息的集合
for all the matter in our universe as collections of fragile information.
而量子传输提供了新的方式影响这种脆弱性
And quantum teleportation revealsnew ways to influence this fragility.
切记 一切都有可能
And remember, never say never.
纵观一个世纪的一小段
In a little over a century,
人类的认知 从在原子级别上对电子行为的
mankind has advanced from an uncertain new understanding
不确定的新认知
of the behavior of electronsat the atomic scale
到有把握地穿越一个房间传输它们
to reliably teleporting themacross a room.
这种现象的新的技术应用
What new technical masteryof such phenomena
在一千年或甚至是一万年后会是什么样子呢?
might we have in 1,000,or even 10,000 years?
只有时空知道了
Only time and space will tell.

发表评论

译制信息
视频概述

量子物理解释瞬移技术的可能性

听录译者

收集自网络

翻译译者

lala

审核员

审核员 V

视频来源

https://www.youtube.com/watch?v=JMdO5KyjwAw

相关推荐