ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

为地球充电 – 译学馆
未登陆,请登陆后再发表信息
最新评论 (0)
播放视频

为地球充电

Will Batteries Power The World? | The Limits Of Lithium-ion

此视频由Anker赞助 详情见稍后
This video was made possible by Anker –more on that later.
在过去二十年 一系列更轻更强大的可充电电池
Over the last twenty years, a slew of ever-lighter, ever-more-powerful rechargeable batteries
使得智能手机 迷你高清相机 无人机 商业性地
has enabled the rise of smartphones, miniature high definition cameras, drones, commercially
有竞争力的电动汽车 无线耳机等等发展迅速
competitive electric cars, wireless headphones, and so on.
这看起来似乎我们迈向一个未来 整个星球由电池供电
It seems like we’re moving towards a future where the entire planet is battery-powered,
但是有两大因素发挥作用 (1)我们可以制造多轻及能量密度多高
but there are two big factors that will determine that possibity: 1) how light and energy dense we
的电池 (2)我们是否能够制造足够的
can make batteries, and 2) whether we’ll even be able to physically manufacture enough
电池
batteries.
本视频阐述了这个问题的第一部分 布莱恩的 Real Engineering 会对
This video covers part 1 of this question, and Brian of Real Engineering is covering
第二部分进行说明 我们会在末尾放他的视频的链接
part 2 – we’ll link to his video at the end.
电池性能在变得越来越好 如今 每千克电池可以存储的电量
Ok, so batteries have been getting better and better, and nowadays, they can store over
比1990年代的两倍还多 这意味着它们可以以一半的重量
twice as much energy per kilogram as in the 1990s , which means they’re half the weight
存储相同的电量
for the same energy stored.
从而应用于所有的无人机和智能机
Hence all the drones and smart phones.
那么这种趋势的极限是什么呢?
So what’s the limit to this trend?
电池的原理相当简单:取用两块部分溶解的金属
Batteries are, in principle, fairly simple: take two partially dissolved metals, one whose
其中一块金属的原子发生氧化反应失去电子 另一金属的原子想要
atoms want to dissolve more and give up electrons, and one whose atoms want to deposit back on
沉淀为固态但是需要自由电子来实现
the solid bit but need spare electrons to do so.
当你把这两块活泼性不同的金属通过导线或者其他介质连接在一起时
When you put these two together connected with a wire or some other conductor , they’ll
它们会各取所需 溶解或沉淀得更多 传递电子给对方
satisfy each others’ wants, either dissolving more or depositing more, and sending the electrons
通过导线传递
to each other along the wire.
瞧(法语):这就是电流!
Voilá: electricity!
如果你让电流反向通过导线 溶解和沉淀的过程就会逆转
And if you force electricity backwards through the wire they’ll reverse their dissolving
这一过程称之为“再充电”
and depositing, otherwise known as “re-charging”.
有两个因素先天限制了轻量电池的重量
The intrinsic limits to how lightweight batteries can be are imposed by two factors: the weight
你使用的两块材料的重量 以及每个电子转移所释放的电量
of the two materials you use, and how much energy they give off per electron traded.
你想要最轻的材料拥有最高的电量转化率
So you want the lightest materials that produce the most energy per electron.
元素周期表左侧的金属像锂 钠 铍
Metals from the left side of the periodic table, like lithium, sodium and beryllium,
具有极强的还原性 而右侧的原子像氟 氧 硫
really want to lose electrons, while atoms from the right side like fluorine, oxygen,
则具有强氧化性
and sulfur really want electrons.
靠近周期表顶端的原子质量更轻 所以我们只需把锂和氟凑在一起
And atoms close to the top are lighter weight, so we can just slap together lithium and fluorine
就能制造出一个完美的电池 对吗?
and make a perfect battery, right?
不幸的是 不可以 锂和氟之间的反应过于剧烈 我能找到的唯一有据可查的
Unfortunately, no – lithium and fluorine are way too reactive – one of the only well-documented
锂氟反应实际应用 是非常强大并危险的
practical uses of a lithium fluorine reaction I could find was incredibly powerful and dangerous
火箭燃料
rocket fuel.
事实上 电池的电化学十分地复杂 需要把
In practice, the electrochemistry of batteries is incredibly complicated, and requires combining
可以进行良好电反应 化学反应的金属结合起来 并在常温常压环境下可控
metals that work well together chemically, electrically, and controllably at normal temperatures
例如 氧是气体 硫是一种可怕的导体 钠需要被熔化
and pressures . For example, oxygen is a gas, sulfur is a horrible conductor, and sodium
这是用以上元素制造电池面临的挑战
needs to be molten – challenges to using any of them to make batteries.
当今轻量可充电的商用安全电池标配是锂和石墨在一侧
The current standard for lightweight, rechargeable and commercially safe batteries uses lithium
另一侧有多种选择 通常是氧化钴
and graphite on one side, with a variety of options for the other side, often cobalt oxide
锂原子是为了转移电子而溶解或沉淀的
. Lithium atoms are what either dissolve or deposit in order to transfer electrons, hence
之后得到了锂离子 而其他的材料在此过程中则是静负载
the name “lithium ion”, while the other materials are dead weight along for the ride
我的意思是 它们扮演了重要的化学角色 但是使得转移电子
I mean, they play important chemical roles, but they greatly increase the weight-per-electron
所需的重量显著增加
transferred.
所以 如何得到更轻的电池?
So how much lighter will batteries get?
理论计算得出 锂离子电池最小的重量大约为
Theoretical calculations put the minimum possible weight for lithium ion batteries at around
它们现在重量的一半 如今正在开发的一种较轻的候选材料是锂硫电池
half what they currently are . A lighter candidate currently being developed
它与锂离子电池的电子能量相似
is the lithium-sulfur battery , which has a similar amount energy-per-electron as lithium-ion
但是锂硫组合比锂——二氧化钴——石墨的组合更轻
batteries, but lithium and sulfur are lighter than lithium and cobalt, oxygen and carbon
因此 在原理上同等容量的电池可能重量最多为锂电池的三分之一
, so a battery with equivalent capacity can in principle weigh around a third as much
性能甚至更好的是锂氧电池
. Even better, lithium-oxygen batteries , while
不过这还是一项难以企及的科技 它的理论重量仅为锂硫电池的
still an incredibly far-off technology, are theoretically four times lighter than lithium
四分之一
sulfur batteries.
但这非常接近化学反应电池的极限
But that’s pretty close to the limit for chemical-reaction-based batteries – there
没有任何物质能在一定的重量下能比锂在溶解端 氟在沉淀端的组合
aren’t really any materials that give off more energy per electron for a given weight
释放出更多的电子能量 一块锂氟电池
than lithium on the dissolving side and fluorine on the depositing side , and a lithium-fluorine
既危险又不可能 并且只比锂氧电池轻10%
battery – as dangerous and impossible as it is\u00a0– is limited to only be about 10%
所以理论的电池重量下限
lighter than a lithium-oxygen battery . So the theoretical lower limit for batteries,
约为当前重量的5%
period, is about 5% of current weights.
但这还只是一个美好的愿景 一切都很完美 完美的世界场景
But that’s an incredible long-shot, everything-works-out, perfect world scenario.
更有可能的是 我们最终会把优质电池与超级电容器 燃料电池
More likely is that we end up combining pretty-good batteries with supercapacitors, fuel cells,
水电以及其他能量存储形式结合在一起 飞机将可能会一直使用
hydropower and other mechanical energy storage types, and airplanes will probably always
某种类型的烃燃料
have to use some sort of hydrocarbon fuel.
或者我们最终会找到核聚变的秘密
Or maybe we’ll finally figure out fusion.
好的 这是我们今天可以使用的令人惊异的电池技术的一个例子
Ok, so here’s an example of the amazing battery technology we have available today
它又小又轻 主要是由这样的八个电池
: this battery pack is crazy small and light –\u00a0it’s basically eight of these with
和一些十分聪明的电路组成的 它有足够的能量向智能手机充电10次
some clever circuitry\u00a0– and it has enough energy to charge a smartphone 10 times, which
或者为这样的LED灯供电大约10小时
is equivalent to running this LED lightbulb for 10 hours.
这个霸道的移动电源的制造者——Anker 赞助了这个视频
The makers of this ridiculous battery pack, Anker, are sponsoring this video and also
并且举办了一场霸道的比赛 他们设置了十个两千美元
running a ridiculous contest where they’re giving away ten prizes of two thousand dollars
加上一个移动电源的奖品 你只需要提供一段录像并说明
plus one of their battery packs – they’re asking for video submissions about a time
电力耗尽是令人尴尬或不愉快的 比如阿波罗13耗尽了电量会怎样
that running out of power was awkward or unpleasant – you know, like how Apollo 13 almost ran
或者你上周割草到一半没电了是怎样的尴尬
out of batteries, or how I only made it halfway through mowing the lawn last week.
你可以通过链接找到更多关于Anker的电源的内容
You can find out more about Anker’s batteries and the contest by going to the links in the
以及大赛视频的要求
video description.
我还没有提到电池的一个方面 就是电力传输
And one aspect of batteries I haven’t mentioned at all yet is power delivery – aka, how quickly
它们为你的设备充电能有多快?这个移动电源非常聪明 当检测到有设备插入时
they can charge your devices –\u00a0this battery pack is smart enough to detect what you’ve
可以尽可能快地为它充电
got plugged in in order to optimize charging time.
别忘了看看布莱恩的REAL ENGINEERING视频
And of course don’t forget to check out Brian’s video about whether or not it’s
关于是否有可能制造足够的电池来为地球提供动力
even possible to make enough batteries to power the planet.

发表评论

译制信息
视频概述

可充电电池技术变得越来越强大,越来越多的设备离不开电池,那么电池作为储能载体能否更上一层楼?

听录译者

收集自网络

翻译译者

西厓柳

审核员

译学馆审核团D

视频来源

https://www.youtube.com/watch?v=AdPqWv-eVIc

相关推荐