未登录,请登录后再发表信息
最新评论 (0)
播放视频

超越史上最热物质

What Was the Hottest Thing Ever?

从火山到超新星 宇宙充斥着无数热的东西
The universe is filled with plenty of hot things, from volcanoes to supernovas.
而有些东西常常是比其他东西热的 那么也就必然有东西保持着“史上最热之物” 的记录 对吧
But some things are hotter than others — and something has to hold the record for “hottest thing ever”, right?
尽管事实上我们很难搞清楚到底什么才是史上最热的东西
It turns out that it’s sort of hard to figure out what the hottest thing ever is, though.
因为这取决于你如何理解“史上”的意思 基于2012年的一项实验
Because depending on what you mean by “ever”, it could be an experiment done in 2012, the
它可以是星团内部的东西 也可以是诞生时刻的宇宙本身
stuff inside galaxy clusters, or even the whole universe, just a moment after it began.
让我们从史料中的最热之物开始好了 一项2012年的
Let’s start with the hottest thing in recorded history: an experiment from the Large Hadron
大型强子对撞机的实验
Collider, or LHC, back in 2012.
为了学习粒子是由什么组成的 它们是如何相互作用的 大型强子对撞机将离子
To learn what particles are made of and how they interact, the LHC accelerates ions or
或是质子在相互碰撞前加速到接近光速
protons close to the speed of light before smashing them into each other.
这种碰撞一般都会产生爆炸 但这一次的爆炸极为猛烈
These collisions normally create explosions, but this one was a lot bigger than usual.
在2012年8月 科学家们扑在一项实验上 它有一个详细描述的名字
In August 2012, scientists were working on an experiment with a very descriptive, detailed
大型离子对撞实验 或ALICE
name: A Large Ion Collider Experiment, or ALICE.
这项实验旨在研究一种产生在宇宙之初的被称作夸克胶子等离子的物质
The goal of the experiment was to learn about a substance from the dawn of time called quark-gluon plasma.
夸克和胶子是构成其他诸如质子和中子等较大结构的
Quarks and gluons are elementary particles that make up bigger particles like protons
基本粒子
and neutrons.
我们从没有见过夸克或胶子本身 但是早期宇宙充满了
We’ve never seen a quark or gluon by itself, but the early universe was filled with a super
浓稠的夸克胶子等离子体 夸克和胶子在其中极速并近乎独立地运动着
hot, soupy liquid called quark-gluon plasma, where quarks and gluons zoomed around almost independently.
当等离子体冷却后 它们就永久地形成了那些较大的粒子 但我们
They permanently clumped together into larger particles when the plasma cooled, but we aren’t
并不知道这究竟是如何发生的
exactly sure how it happened.
科学家们希望通过制出等离子体再观察它们冷却下去的方法
And by creating the plasma themselves and watching it cool down, scientists are hoping
找到这一过程是如何发生的
to find out.
但是若想制出夸克胶子等离子体 我们需要剧烈的爆炸
But to create quark-gluon plasma, you need a huge explosion.
而将东西猛烈地撞击在一起无疑是制造爆炸的最好方法
And there’s no better way to create an explosion than by smashing things together.
在大型重离子碰撞实验中 大型强子对撞机大量地加速 使离子速度接近光速
In the ALICE experiment, the LHC accelerated heavy lead ions close to the speed of light,
当它们相撞在一起时便能有足够的能量 使它们产生大量的压强和热量
giving them enough energy that when they crashed together, they created a lot of pressure and heat.
结果是形成很热的火球 在一瞬间把离子都融化为
The result was a fireball so hot that, for a split second, it melted the ions into a
夸克胶子等离子体
quark-gluon plasma.
那火球的温度高达5.5万亿摄氏度
That fireball was a whopping 5.5 trillion degrees Celsius.
离子加速器之前产生过其它热爆炸 但这个特别地
Particle accelerators have created other hot explosions before, but this one was particularly
炎热 因其使用的是重铅离子而非较轻的微粒
hot because it used heavy lead ions instead of lighter particles.
然而我们没有任何关于夸克和胶子的官方结果
We don’t have any official results yet about quarks and gluons.
但大型强子对撞机是我们最好最强大的资源 可以再创造
But the Large Hadron Collider is our best and most powerful resource for recreating
宇宙早期的情况——并生成大量的热量
the conditions of early universe – and creating a lot of heat.
因此ALICE可制造最热的温度 但整个过程只持续不到几分之一秒
So, ALICE led to the hottest temperature in the entire universe, but only for a fraction of a second.
为了找到宇宙常态时期最热的物质 你必须漫游到
To find the hottest thing on a normal day in the cosmos, you’ll have to travel a lot
地球外很远之处
farther from Earth.
在宇宙中 星系有时会集群分布在邻近地区 称为星系团
Throughout the universe, galaxies are sometimes clumped together in neighborhoods called galaxy clusters.
但在星系之间是超高温等离子体 称为集群内介质
But between the galaxies is another kind of superheated plasma, called the intracluster
其温度可高达3亿摄氏度
medium, which can be up to 300 million degrees Celsius!
我们仍然不能准确地确定这介质来自何处 但我们开始
We still aren’t exactly sure where this medium came from, but we’re starting to
明白它为何如此之热
understand why it’s so hot.
在星系团形成之前 它们仅仅是庞大的打着旋的球状物质
Before galaxy clusters formed, they were just huge, swirling balls of matter.
最终 那物质浓缩 形成星星 星系以及行星 并且那个过程
Eventually, that matter condensed, forming stars and galaxies and planets, and that process
散发出巨大的能量 这些能量最终转变为热量
gave off a huge amount of energy, which was ultimately converted into heat.
星系越巨大 释放的能量就越多 这使得集群内物质
The more massive the galaxies, the more energy was given off, which made the intracluster
变得更为炎热
medium hotter.
但星系团的形成在数十亿年前 所以你可能认为这些物质
But galaxy clusters formed billions of years ago, so you’d think the medium would have
到如今已经冷却了
cooled down by now.
然而并没有 因为它一直借助黑洞保持着热量
It hasn’t, though, because it’s being kept warm by black holes!
在黑洞的引力吸入物质后 它释放出能量 这些能量最终转变为热量
After a black hole’s gravity sucks in matter, it gives off energy that’s turned into heat.
由于许多星系在其中心都存在黑洞 便有许多的热量工厂
And since a lot of galaxies have black holes at their centers, there are plenty of heat
来使物质保持在星系团形成时的合适温度
factories to keep the medium at the toasty temperatures created when the cluster formed.
但在整个宇宙中确有一个最热的物质
But there was one event that was truly the hottest thing in the whole universe, for all
有史以来最热物质
of history.
那个时刻刚好在宇宙大爆炸之后
And that was the moment right after the Big Bang.
在宇宙刚形成之时 它是一个无限小无限密的点
When the universe began, it was an infinitely small, infinitely dense point that expanded
这个点扩展成为我们所知的一切
into everything we know.
我们的物理定律无法解答在宇宙诞生的时刻发生了什么
Our laws of physics don’t have an answer for what happened at the exact moment the
但我们可以猜测大爆炸后一百亿亿亿亿分之一秒
universe was born, but we do have some guesses about what happened one-ten-billion-trillion-trillion-trillionth
发生了什么
seconds after the Big Bang.
在那几分之一微秒开始 宇宙温度可能高达一亿亿亿亿度
And in that tiny fraction of a second, the universe would have been almost a billion-trillion-trillion
——那可是1后面加32个零啊
degrees Celsius – that’s 1 followed by 32 zeroes!
它如此之热可能是因为整个宇宙所有的物质和能量都塞在
It was probably so hot because all the matter and energy in the entire universe was crammed
一个点里 这意味着所有物质都处于一个惊人的压强之下
into one spot, meaning everything was under an incredible amount of pressure.
所有的压强产生许多的热量
And all that pressure caused a ton of heat.
事实上它可能达到绝对热 什么是绝对热
In fact, it might have been as hot as something could ever get: what’s called absolute hot.
绝对热与绝对零度相对 绝对零度是某个物质可以达到的最低温度:零下273.15摄氏度
Absolute hot is the opposite of absolute zero, the coldest something could ever be: -273.15
或者0开尔文
degrees Celsius, or 0 Kelvin.
绝对热可能是10E32(10的32次方)度 或许
Some physicists believe absolute hot is 1032 degrees Celsius, but it might also be a bit
低一些 比如10E30或10E17度
lower, like 1030 or 1017 degrees.
不管怎样 它比我们所能想象的任何物质都要热
Either way, it’s much hotter than anything we could imagine.
随着宇宙膨胀 逐渐冷却 使得夸克和胶子可以聚集在一起
As the universe expanded, it cooled, which allowed quarks and gluons to come together,
原子形成 你所知道的所喜爱的一切都开始存在
atoms to form, and everything you know and love to come into existence!
所以即使处于绝对热状态的宇宙 毫无疑问地令人觉得不可思议 甚至可能有些生畏
So even though the universe at absolute hot was definitely weird and probably awesome,
但是它最终冷却了下来可能才是最好的
maybe it’s for the best that it cooled down eventually.
感谢您观看本期科学秀 特别感谢我们的赞助商
Thank you for watching this episode of SciShow, and special thanks to our patrons on Patreon!
如果你想看我们续集 可以搜索patreon.com或科学秀
If you’d like to help us keep making episodes like this, go to patreon.com/SciShow.
订阅youtube.com或者科学秀 每天收获更多的科学知识
And for more science every day, go to youtube.com/scishow and subscribe.

发表评论

译制信息
视频概述

宇宙大爆炸刚结束之时,其温度称之为绝对热。要理解温度这个概念,你必须得清楚什么是相互作用。相对与绝对零度只能无限逼近零,绝对热也只能无限逼近热量平衡,已经超出物理学研究范畴。史上可以摘星星的人是Ljimnn(把心掏给你)

听录译者

收集自网络

翻译译者

Ljimnn

审核员

赖皮

视频来源

https://www.youtube.com/watch?v=a4wicOIGlJA

相关推荐