未登录,请登录后再发表信息
最新评论 (0)
播放视频

何为拓扑量子物态?

What in the world is topological quantum matter? - Fan Zhang

如果电力可以不被衰减 永远传输会怎样?
What if electricity could travel forever without being diminished?
如果电脑可以以成倍的速度精确运行会怎样?
What if a computer could run exponentially faster with perfect accuracy?
这些能力将造就怎样的科技?
What technology could those abilities build?
我们或许可以找到答案
We may be able to find out,
这都多亏了三位科学家的研究
thanks to the work of the three scientists
他们获得了2016年诺贝尔物理学奖
who won the Nobel Prize in Physics in 2016.
戴维•索利斯 邓肯•霍尔丹和迈克尔•科斯特利兹能获此殊荣
David Thouless, Duncan Haldane, and Michael Kosterlitz won the award
是因为他们发现 即使极小尺度的微观物质
for discovering that even microscopic matter at the smallest scale
也能展现出宏观物质的拓扑相性
can exhibit macroscopic properties and phases that are topological.
可这是什么意思呢?
But what does that mean?
首先 拓扑学是数学的一个分支
First of all, topology is a branch of mathematics
致力于研究物体的基本属性
that focuses on fundamental properties of objects.
当物体被逐渐拉伸或者弯曲时
Topological properties don’t change
其本身所具有的拓扑性质不变
when an object is gradually stretched or bent.
物体必须被拉扯或者连系到新位置
The object has to be torn or attached in new places.
拓扑学家看来 甜甜圈和咖啡杯是一样的
A donut and a coffee cup look the same to a topologist
因为他们都有一个洞
because they both have one hole.
你可以将甜甜圈重塑为咖啡杯
You could reshape a donut into a coffee cup
它也仍然只有一个洞
and it would still have just one.
这种拓扑性质是不变的
That topological property is stable.
此外 扭结饼有三个洞
On the other hand, a pretzel has three holes.
也就没有办法通过增量变化
There are no smooth incremental changes
让甜甜圈变成扭结饼
that will turn a donut into a pretzel.
你得重新扯出两个新洞
You’d have to tear two new holes.
很长的一段时间 人们都不清楚
For a long time, it wasn’t clear whether topology was useful
拓扑学是否可用于描述亚原子粒子的行为
for describing the behaviors of subatomic particles.
这是因为很多粒子 比如电子和光子
That’s because particles, like electrons and photons,
服从量子物理的奇异规律
are subject to the strange laws of quantum physics,
具有很多不确定性
which involve a great deal of uncertainty
无法从咖啡杯这样大的尺度上进行观察
that we don’t see at the scale of coffee cups.
可这三位诺贝尔获奖者发现
But the Nobel Laureates discovered
拓扑性质在量子层面确实存在
that topological properties do exist at the quantum level.
这一发现可能将革新材料科学
And that discovery may revolutionize materials science,
电子工程学和计算机科学
electronic engineering, and computer science.
这是因为拓扑性质
That’s because these properties lend surprising stability
能为微妙的量子世界中的某些特异状态
and remarkable characteristics to some exotic phases of matter
带来令人惊讶的稳定性和非凡的特性
in the delicate quantum world.
其中一个例子被称为拓扑绝缘体
One example is called the topological insulator.
想象这里有一层电子
Imagine a film of electrons.
如果被一个足够强的磁场贯穿
If a strong enough magnetic field passes through them,
每一个电子都会开始做圆周运动
each electron will start traveling in a circle,
这种现象被称为封闭轨道
which is called a closed orbit.
因为电子们都被束缚在圆环轨道内
Because the electrons are stuck in these loops,
也就不能传导电流
they’re not conducting electricity.
然而在材料边缘
But at the edge of the material,
轨道变得开放 连贯
the orbits become open, connected,
且都指向同一方向
and they all point in the same direction.
因此 电子们可以在轨道间跳跃
So electrons can jump from one orbit to the next
并围绕材料边缘运动
and travel all the way around the edge.
这意味着该材料边缘导电
This means that the material conducts electricity around the edge
而中间不导电
but not in the middle.
拓扑学便在此刻派上用场了
Here’s where topology comes in.
这种导电性不会受材料细微改变的影响
This conductivity isn’t affected by small changes in the material,
如杂质或缺陷
like impurities or imperfections.
就像咖啡杯上的洞
That’s just like how the hole in the coffee cup
不会因拉扯而发生变化
isn’t changed by stretching it out.
这种拓扑绝缘体的边缘使电子被完美传导
The edge of such a topological insulator has perfect electron transport:
没有电子逆向运动
no electrons travel backward,
没有能量以热量的形式散失
no energy is lost as heat,
传导通路的数量也是可控的
and the number of conducting pathways can even be controlled.
人们在未来的电子学研究中
The electronics of the future could be built
可以利用这种极为高效的电子高速
to use this perfectly efficient electron highway.
亚原子粒子的拓扑性质
The topological properties of subatomic particles
也将彻底改变量子计算研究
could also transform quantum computing.
量子计算机利用亚原子粒子
Quantum computers take advantage of the fact
在同一时间具有的不同状态的特性
that subatomic particles can be in different states at the same time
得以将信息储存在所谓的 量子比特 中
to store information in something called qubits.
这些量子比特解决问题的速度
These qubits can solve problems exponentially faster
比传统的数字计算机更快
than classical digital computers.
问题是这些数据太脆弱了
The problem is that this data is so delicate
以致与环境的交互就可将其摧毁
that interaction with the environment can destroy it.
但在某些特异的拓扑相里
But in some exotic topological phases,
亚原子粒子可以被保护起来
the subatomic particles can become protected.
也就是说 拓扑相构建的量子比特
In other words, the qubits formed by them
不会因微小的扰动或本地干扰而改变
can’t be changed by small or local disturbances.
这些拓扑量子比特可以变得更加稳定
These topological qubits would be more stable,
从而得以进行更精确的计算
leading to more accurate computation
组成更好的量子计算机
and a better quantum computer.
拓扑原本被作为
Topology was originally studied
一个纯抽象数学的分支进行研究
as a branch of purely abstract mathematics.
多亏了索利斯 霍尔丹和科斯特利兹的独创研究
Thanks to the pioneering work of Thouless, Haldane, and Kosterlitz,
人们现在知道 可以用它来理解自然之谜
we now know it can be used to understand the riddles of nature
并且为未来的科技带来革新
and to revolutionize the future of technologies.

发表评论

译制信息
视频概述

2016年的诺贝尔物理学奖获得者发现了微观粒子也具有与宏观物体一致的拓扑性质,这一发现将革新多种学科,可用于构建更精密的量子计算机、探究自然规律、创造更多新科技。

听录译者

收集自网络

翻译译者

Hermes赫斯

审核员

W

视频来源

https://www.youtube.com/watch?v=GJHhnr9R_ZM

相关推荐