未登录,请登录后再发表信息
最新评论 (0)
播放视频

雪花之谜

The Snowflake Mystery

– [Ken] Now, I’m gonna turn on 2000 volts.
Ken:现在我要调到2000伏了
– [Derek] What?
Derek:什么?
And this is the first step in creating snowflakes in the lab.
这是在实验室制作雪花的第一步
This is totally wild.
这太疯狂了
– What? – Crazy, huh?
-什么 -疯狂啊
The tips of those needles are
这些针尖的直径
like a hundred nanometers in diameter.
大约100纳米
– [Derek] That is so wild.
Derek:太疯狂了
Dr. Ken Libbrecht is the snowflake guy.
这个制作雪花的人就是Ken Libbrecht博士
– I was the snowflake consultant for the movie, “Frozen.”
我是电影《冰雪奇缘》的雪花设计顾问
It’s okay to conjure snowflakes out of your fingertips,
你完全可以从指尖变出雪花
but they have to be real snowflakes,
不过必须是真正的雪花
or people aren’t buying it.
不然人们不会买账的
(Ken and Derek laughing)
[Ken和Derek大笑]
The US Post Office made snowflake stamps using my pictures.
美国邮局用我的图片做了雪花邮票
It’s not the kind of thing you normally think of
刚开始研究物理时
when you start doing physics, that you’d be on a postage stamp.
你并不会想到成果会出现在邮票上
– [Derek] You’ve written the book on snowflakes, literally.
Derek:你真的写了一本关于雪花的书
– So I had like two successful books in a row,
现在我已经连续写出了两本成功的书
so we just kept making books,
所以我们就不停地写书
until finally (laughing) they sold zero copies, and then we stopped.
直到最后[笑声]一本都卖不出去 我们就不写了
(dramatic orchestral music)
[戏剧管弦乐]
– So, are you kind of like a snowflake artist?
所以某种程度上 你是个雪花艺术家
– I call it a designer of snowflake.
我称之为雪花设计者
Because yes, I am designing this on the fly.
因为 是的 我就是在设计这个
I don’t have a computer that does all this for me.
我全程没有用电脑工作
I just do it by hand, so every one’s a little different.
而是手工制作 所以每一个都不太一样
– [Derek] Ken knows so much about snowflakes,
Derek:Ken对于雪花非常了解
he can design and construct them to his own specifications.
他可以按照自己的需求设计和构建雪花
– [Ken] So what’s happening now is it’s growing
Ken:这里的雪花正在形成
and doing its thing at some…
像这样生长
It’s at -13 Celsius now, but I want to make some branches.
现在零下13摄氏度 但我想做一些分叉
I’ll just turn this down to -15.
所以把温度调到零下15度
And then I’m gonna increase the humidity a little bit,
然后我要稍微增加一点湿度
the super saturation,
达到超饱和状态
and you’ll start to see branches come out there.
你会看到分叉开始形成
– [Derek] See you changing those conditions,
Derek:你调整的这些条件
just caused the plate to kind of stop and become really–
似乎让雪花不再是板状 而变成
– I changed the growth conditions to prefer branches.
Ken:我改变雪花的形成条件以便形成分叉
This little thing right there, that little nub,
看这儿的这个小东西 这个小块
that’s the only thing that touches the sapphire substrate.
这是唯一触碰蓝色基底的东西
The rest of this is all growing above.
其他部分都会在上面形成
This increases the air flow.
这会增加气流
Those are droplets forming,
这些是正在形成的水滴
and now I’m really kicking it into gear.
现在我要正式启动了
(mystical orchestral music)
[神秘管弦乐]
Now, what I’m gonna do is I’m gonna turn that humidity down to zero,
现在我要做的是 把湿度降到零
so the droplets are starting to recede,
这样水滴开始消失
and this will stop growing, and kind of start to facet a little bit.
这个也会停止生长 然后形成一点点琢面
Let’s say I want branches again,
如果说我想继续做分叉
now I’m gonna really hammer on it.
现在我要真正集中精力了
– [Derek] So you’re giving it a lot of moisture.
Derek:所以你是在给它很高的湿度
– A lot of moisture now, but you’ll see side branches.
Ken:现在湿度很高 但你会看到边缘的这些分叉
You really start to feel you understand what’s going on,
当你想让它这样
when you can say, “Now I’m gonna do this,”
而它真的这样发生了
and then it happens.
这件事情让你觉得 你真的知道将要发生的事
It’s fun. I can predict the future.
很有趣 我可以预言未来
(laughing)
[大笑]
I like to think they’re better than nature,
我倾向于认为他们比自然形成的还要好
and the reason is that the facets of just sharp.
原因是琢面很锋利
All the edges on these things are just sharp and crisp,
所有雪花的边缘都是锋利且利落的
whereas in the sky they have to fall,
然而他们在空中一定会落下
and by the time they fall, and you pick them up,
假如在他们下落的时刻 把他们捡起来
and you put them under a microscope,
放在显微镜下
they’ve started to evaporate a little.
他们已经有一点开始蒸发
Boy, these are just, (snaps) bang, just crisp.
但这些就是 啪的一下 很干脆
– [Derek] The first close-up photograph of a snowflake
Derek:第一张关于雪花的特写图片
in the wild was taken in 1885
是1885年在野外拍摄的
by American meteorologist, Wilson A. Bentley.
拍摄者是一位名叫Wilson A. Bentley的美国气象学家
It was Bentley who originated the idea
就是Bentley最开始提出了
that no two snowflakes are alike, and he would know.
“没有两片雪花是相同的”这个观点
Over the course of his life,
他的一生中
he took more than 5,000 photos of snowflakes,
拍摄了超过5000张雪花的照片
a selection of which appear in his book, “Snow Crystals,”
你可以在他的《雪花博物馆》中 看到其中一组选集
which is still in print today.
这本书至今仍然在印刷出版
But most snowflakes don’t look
但大部分雪花
like the ones Bentley photographed,
和Bentley拍摄的看上去不太一样
because he selected only those in pristine condition
因为他拍的只是那些原始状态下
with uncommon beauty and symmetry.
有着罕见的美丽和对称性的雪花
– I mean, when you’re looking for snowflakes,
我的意思是 寻找雪花时
I’ll take a big piece of cardboard,
我会拿出一大张硬纸板
and you just glance at it.
只是扫一眼
(exhaling)
[呼气]
Crap, nothing, brush them aside, more.
没用 什么都没有 全都刷到一边 再来
No, each brush is a thousand snowflakes.
每一次刷掉的都是数以千计的雪花
They’re hard to find.
它们非常难找
They’re one in a million, I mean, literally.
严格意义来说 找到的几率可能是百万分之一
– [Derek] We are all so used to seeing pictures like this,
Derek:我们都习惯于看这样的图片
that we are blind to the mysteries of the snowflake.
以至于我们对雪花的奥秘视而不见
Like, why do they all have six fold, radial symmetry?
比如 为什么他们都是六角形 镭射状对称
Why are they so intricate,
为什么他们总是错综复杂
and yet so different from each other?
而且每一片都不同
How do opposite arms of a snowflake
为什么一片雪花中相对的分叉
mirror each other so perfectly?
能给实现如此完美的镜像对称
I mean, how does one side of the snowflake know
我是说 雪花的一边是怎么知道
what the other side is doing?
另一边正在发生什么
And why are snowflakes flat?
为什么雪花是平的
They’re usually millimeters in diameter,
他们直径通常是毫米级的
but micro meters thick.
但厚度仅有微米级
The edges of a plate can be as narrow as razorblades,
雪花的边缘像剃须刀片一样窄
but the mystery goes even deeper.
但更神秘的是
Everyone pictures snowflakes like this,
每个人想象中的雪花都是这样的
but the truth is they take all sorts of different forms,
但事实是 雪花有各种不同的形状
like this, a hollow column.
像这个 一个空心的柱体
That is a snowflake?
这是雪花吗
– [Dr. Libbrecht] That is a snowflake.
Ken:这是雪花
– [Derek] There are also needles, cups and bullets.
Derek:也有针形 杯子形和子弹形
– This is like my favorite kind of snowflake.
这是我最喜欢的雪花
It is a capped column.
这是封顶的柱形
It started out growing as a column,
开始的时候像是柱形
but then the temperature changed,
但后来温度变了
and then you’ve got plates growing on either end.
这样两边就会形成板状
(bright orchestral music)
[明快的管弦乐]
It’s just a cacophony of different shapes.
这只是不同形状的演变
All of these appear spontaneously.
这些都是自发地出现的
There’s no DNA or any kind of a blueprint for what’s going on.
并没有DNA或所谓的蓝图决定雪花会变成什么样
It’s just water vapor freezing into ice,
只是水蒸气凝结成冰
and all this happens.
接着就形成了这些
– [Derek] So you’ve identified
Derek:你已经辨识出了
35 different types of snowflakes.
35种不同的雪花类型
– Yes, there’s no really one way
是的 雪花的类型实际上并不能
to define a type of snowflake.
用一种方式定义
The first chart of snowflakes is like 41, I think,
第一张雪花的图标差不多有41种 我想
and then it got bigger – 60 or 70,
然后就变的更大 有60-70种
and the latest one by some Japanese physicists,
最新的一张是一个日本物理学家做的
I think had 108 different types of snowflakes,
我想差不多有108种雪花的类型
and I found 108 was too many.
我觉得108种实在太多了
(Ken laughs)
[Ken大笑]
(snow blowing)
[雪被吹起的声音]
– [Derek] How does simple ice create so many distinct forms?
Derek:简单的冰怎么会出现这么多独特的形式
(curious orchestral music)
[奇特的管弦乐]
All snowflakes form in much the same way.
所有雪花都是以类似的方式形成的
Water evaporates into water vapor,
水蒸发变成水蒸汽
individual molecules bouncing around in the atmosphere,
单个分子在大气中弹跳
and as this vapor rises,
当水蒸汽上升时
it cools and becomes super saturated,
冷却变成过饱和状态
meaning there are more water molecules in the air
意味着在空气中的水分子数量多过于
than there would be in equilibrium at this temperature.
在这个温度种达到平衡状态的水分子数量
Water molecules condense onto dust particles
水分子凝结在尘埃微粒上
to form tiny droplets.
从而形成小小的水滴
And although the temperature may be below freezing,
而且尽管温度可能已经低于零度
the droplets don’t immediately freeze,
这些小水滴也不会立刻结冰
but at some point, one droplet will freeze.
但在某些时刻 一个小水滴可能会结冰
Inside, the water molecules lock into place,
水分子被锁定在内部
forming a hexagonal crystal.
形成六边形晶体
This structure results from the peculiarities of water molecules.
这种结构源自水分子的特性
Oxygen atoms attract electrons more than hydrogen.
氧原子比氢原子更能吸引电子
And since the molecule has a bent shape,
而且由于分子结构是弯曲的
it’s polar with oxygen being slightly negative,
并且 氧的磁极是微负性的
and the hydrogens, slightly positive.
氢的磁极是微正性的
Since unlike charges attract, hydrogen from one molecule
由于不同电荷的吸引 一个分子上的氢会
will sit next to an oxygen from another molecule,
和另一个分子的氧靠近
forming a so-called hydrogen bond,
构成所谓的氢键
and this is what creates the hexagonal molecular lattice.
这就是六边形晶格形成的原因
But how does this microscopic lattice
但这个微观的晶格
grow into a hexagonal crystal that we can see?
是如何变成我们看到的六边形晶体的呢
– So you start with a chunk of ice,
以一块冰作为起点
and these little guys are meant to be water molecules.
这个小东西会变成水分子
And what happens is there are these flat surfaces,
这里形成的是这些扁平的表面
which are the facet surfaces,
就是这些琢面
and at a molecular scale, they’re very smooth and flat.
以分子的规格来看 他们非常顺滑扁平
And so when a molecule hits,
所以当分子碰到
a water vapor molecule hits that smooth and flat surface,
一个水蒸汽分子碰到顺滑扁平的表面
it tends to bounce off, whereas here, it’s rough.
它往往会反弹 而这里很粗糙
There are a lot of dangling molecular bonds over here.
这边有很多水分子弹到那边
That’s a rough surface.
那是粗糙的表面
And so when these molecules hit, they tend to stick.
所以当这些分子碰撞时 往往会粘住
It’s a statistical thing, of course,
当然 这是一个概率问题
but the probabilities are high that they stick here
但他们粘在这里的可能性很高
and low that they stick here.
粘在这里的可能性比较低
So if you take any shape, and you just let it grow
如果让任意一个形状变化一小会儿
for a little while, the rough areas fill in,
粗糙的区域被填充
and the flat areas don’t grow very fast,
而平滑的区域没有变化很快
and you end up with a faceted shape.
就会得到一个多面形状
– [Derek] And that’s how we get from the quantum mechanics
Derek:这是我们如何从控制水分子的量子力学
that governs a water molecule, to a hexagonal prism of ice.
到六角冰棱镜
This prism has two basal facets and six prism facets,
这个棱镜有两个基面和六棱柱面
which is important.
这个非常重要
If the basal facets grow fast, you get a column.
如果基面变化更快 就会得到一个柱体
If the prism facets grow faster, you get a flat snowflake.
如果棱镜面变的更快 会得到一片扁平的雪花
Once there is a seed crystal,
一旦有了一个种子晶体
nearby water droplets evaporate
周围的小水滴蒸发
and deposit water molecules onto the growing snowflake.
并且将水分子沉积在正在增长的雪花上
Since the corners of the hexagonal prism stick out farther
因为六棱镜的边角
into humid air, they grow faster,
在湿润的空气中延伸的更远 他们会变化更快
and now they extend even farther,
然后延伸的更远
so they grow even faster in a positive feedback loop.
所以 他们在一种正向循环中更快的生长
This gives rise to six radial branches.
这样就会长出六条放射状分叉
At the corners of these branches,
在这些分叉的边角
additional branches can form for the same reason.
会因为同样的原因形成额外的分叉
Around a hundred thousand droplets
一片雪花的形成大约需要
are required to make a single snowflake,
十万个水滴
and the process usually takes 30 to 45 minutes.
雪花形成的过程通常需要30-45分钟
In the 1930s, Ukichiro Nakaya was systematically studying snowflakes
20世纪30年代 Ukichiro Nakaya在日本北海道大学
at the University of Hokkaido in Japan.
系统的研究雪花
He discovered that the different types of snowflakes
他发现 不同条件下
don’t all occur under the same conditions.
可以生成不同类型的雪花
Instead, two factors,
换句话说 两个因素
the temperature and level of super saturation
温度和过饱和程度
determine what type of snowflake grows.
决定了雪花会成为怎样的形状
His findings are summarized in the Nakaya Diagram,
他在Nakaya Diagram中总结了他的发现
but it’s not a simple pattern.
但这不是一个简单的模式
Around -2 Celsius, you get plates.
零下2度左右 会形成板状
At -5 Celsius, columns and needles form.
在零下5度 形成柱状和针状
At -15 Celsius, it’s plates again,
在零下15度的时候 又会形成板状
and then below -20, you get columns and plates.
当低于零下20度时 会形成柱状和板状
The Nakaya Diagram allows us
Nakaya Diagram让我们了解了
to understand a rough history of any snowflake.
雪花形成的粗略历史
Does each snowflake in essence reveal its history
是否每一片雪花在本质上
through its shape?
都通过它的形状揭示了形成的历史
– Yeah, absolutely, to some degree.
是的 绝对是 在某种程度上
You can definitely look at a snowflake and say,
你可以看着一片雪花说
“Yeah, I know what conditions
哦 我大概知道
“that crystal grew under, more or less.”
这个晶体是在什么条件下形成的
Your typical weather patterns, fronts, cold front,
典型的天气模式 锋面 冷锋
that produces a lot of capped columns,
可以制造很多盖顶柱状
because as the cloud moves up, it starts to get colder
因为当乌云移动 会变得更冷
and initially start to freeze at around -6, -10.
在零下6度 零下10度会开始结冰
That makes columns, and as it gets colder,
这使得柱形形成 当变得更冷的时候
then it makes branches and plates,
形成了支叉和板状
and so you get capped columns.
就得到了盖顶柱形
– [Derek] This also explains
Derek:这也解释了
why snowflakes are so intricate.
为什么雪花如此错综复杂
The temperature and humidity at each moment of growth
在雪花形成的每一个时刻 温度和湿度决定了
determines the structures formed in that moment.
雪花在那个时刻会形成的形状
The symmetry you see is not because one side
你看到的对称并不是因为
somehow knows what the other side is doing,
一侧知道另一侧在发生什么
but because both sides of a single snowflake grow
而是因为一片雪花的两侧
in the exact same conditions.
都在完全一样的条件下
– When the crystal changes its position,
当晶形改变形状时
the temperature will change, say,
温度会改变
and all six branches will see the same temperature change,
全部六个分叉会遇到同样的温度变化
and so they’ll all respond the same way.
所以他们对此的反应也完全一致
– [Derek] Different snowflakes, on the other hand,
Derek:换句话说 不同的雪花
each take a unique path,
都有不同的形成路径
and therefore they experience a unique set of conditions,
因此他们都经历了独特的条件组合
which is why no two snowflakes are alike.
这就是为什么没有两片雪花是相似的
But in the lab, you can carefully control the conditions,
但是在实验室里 你可以很小心的控制条件
so theoretically it should be possible
所以理论上来说 创造几乎相同的雪花
to create almost identical snowflakes, and indeed, Ken has.
是有可能的 而实际上 Ken已经制作出来了
What’s in here?
Derek:这里是什么
– Poke your flashlight in there, and you’ll see.
Ken:让你的手电照在这里 你会看到的
– [Derek] Ah ha, I’m imagining these are seed crystals of a sort?
Derek:啊哈 我猜这是某种种子晶体
– [Ken] Those are a little sparkly snow crystals.
Ken:这是闪闪的雪晶体
– [Derek] Yeah.
Derek:是的
– You know this is another little chamber.
Ken:你知道 这是另一个小膛
It’s just a cold plate,
这只是个冷的盘子
and there’s a little sapphire disc in there,
这是个小的蓝色基底
and then I’m going to push this thing, my sapphire,
我要把我的蓝色基地
all the way in here, and the crystals will waft onto to it
一直推到这儿 然后晶体会飘到上面
and hopefully stay there.
希望它们能停留在那儿
The idea popped in, it’s like,
这个念头是突然闪现的 就像是
oh, if I grow two next to one another,
如果我同时做挨着的两片雪花
they’ll be kind of identical,
他们会很相似
and I call them identical twin snowflakes,
我称他们为相同的双胞胎雪花
’cause they’re like identical twin people.
因为他们就像人类双胞胎
They’re not exactly the same,
不是完全一样
but clearly more alike than you would ever expect.
但很显然比你想象的相似程度更高
(gentle orchestral music)
[轻柔的管弦乐]
Is it really true that no two snowflakes are alike?
真的没有两片雪花是一样的吗
You know, that’s just a silly question.
你懂的 这是个傻问题
(Ken laughs)
[Ken大笑]
It’s silly because no two trees are like,
说这个问题傻是因为 没有两棵树是一样的
no two grains of sand are like, no two anything are alike.
没有两粒砂是一样的 任何两个东西都不会是一样的
Anything that has any complexity
任何具有一定复杂性的东西
is different from everything else,
都有别于其他东西
because once you introduce complexity,
因为一旦你引入了复杂性
then there’s just an uncountable number of ways to make it.
就会有无法估算的方式去达成
– [Derek] If a pair of twins snowflakes
Derek:如果一对儿双胞胎雪花
are growing too close together,
一起紧密生长
they end up competing for moisture between them,
最后由于争夺他们之间的水分
stunting both of their growths.
从而阻碍了他们的生长
The Nakaya Diagram allows us to understand a lot
Nakaya Diagram让我们得以了解很多
about snowflake formation.
关于雪花的组成
Ken has used his experiments
Ken用它的实验
to build his own version of the chart.
建立了他自己的图表版本
But what it doesn’t explain
但没有得到解释的是
is why do ice crystals form this way in the first place?
为什么冰晶体在最初会以这种方式形成
I mean, why do we get plates and then columns
我的意思是 为什么我们会看到板状和柱状雪花
and then plates and columns again?
然后再次演变为板状和柱状雪花
This has been a mystery,
这一直是个迷
essentially since Nakaya introduced his diagram back in the 1930s,
从Nakaya在20世纪30年代介绍他的图表开始
but Ken believes he now has an answer.
但是Ken认为他现在有答案了
Anytime you have a crystal,
每次你拿到一块晶体
the reason why you get these smooth flat facets
之所有晶体会有光滑平坦的琢面
is because it’s not easy to grow more crystal on top.
是因为这样其他晶体就不容易在顶部生长
There are so-called nucleation barriers.
这就是所谓的成核势垒
What you need is a critical density of additional molecules
你需要这种物质中额外分子的临界密度
of the substance before they can come together
让他们聚在一起
to form a little island that is stable enough to grow
形成一个足够稳固的岛屿以便生长
and add another layer onto the crystal.
并且增加更多的层次在晶体上
When you’re first forming a snowflake,
当雪花初次形成时
you’re always gonna start with a hexagonal prism with its two basal facets
总是会从一个有两个基面的 六个棱面环绕的
and six prism facets around the side.
六角棱镜开始
And the nucleation barrier for the basal facets
这个基面的成核势垒
is different than that of the prism facets.
和棱面的不同
If the nucleation barrier is lower for the prism facets,
如果棱面的成核势垒更低
then they grow faster, and you get plate like structures.
他们会生长的更快 会形成板状
If the nucleation barrier is lower for the basal facets,
如果基面成核势垒更低
then they grow faster,
他们会生长的更快
and you end up with column-like structures.
会形成一个柱形结构
Now, the nucleation barriers of ice
现在 已经知道冰的成核势垒
are known as a function of temperature,
是温度的作用
and this explains why around -2,
这就可以解释为什么在零下2度
the prism facets grow faster, and you get plates,
棱面生长更快 所以形成板状
because their nucleation barrier is lower.
因为成核势垒更低
You can also see why below -20 or so,
你也可以看到为什么低于零下20度时
well then you get columns,
会形成柱形
because the basal facet nucleation barrier is lower at those temperatures.
因为在这个温度下 基面的成核势垒更低
But what doesn’t make sense is why we should get columns
但让人想不通的是 为什么在零下5度左右会形成柱形
at around -5 Celsius and then plates again at -15.
而在零下15度又会形成板状
So what is happening?
所以到底是为什么呢
Well Ken’s hypothesis is that these nucleation barriers
Ken的猜想是 这些成核势垒
are valid only for large flat facets,
只对大平面有效
but if you had really narrow facets,
但如果是狭窄基面
well, the nucleation barriers would be different.
成核势垒会变得不同
So Ken proposes that narrow basal facets
所以Ken提出 狭窄基面
have a dip in their nucleation barrier around -4 Celsius,
在零下4度左右 会出现成核势垒
and narrow prism facets have a dip at -15,
而狭窄棱面会在零下15度左右出现成核势垒
so his hypothesis is that the graph should look like this.
Ken的假设就是这张图表看上去这样
This then is consistent with all the different forms
这个图表和雪花在不同温度下
of snowflakes that grow at different temperatures.
形成不同形状的方式是一致的
But what accounts for these dips?
但又是什么导致了成核势垒的下降呢
Well, let’s say we have a narrow prism facet,
假设我们有一个狭窄棱面
so we’re growing a plate snowflake.
所以我们可以得到一片板状雪花
Water molecules that hit the basal facets
碰撞到基面的水分子
are unlikely to reach the critical density required
不太可能到达能够跨越成核势垒的
to overcome the nucleation barrier,
临界密度
so that surface grows only slowly.
所以表面只能缓慢生长
But on either side of this narrow prism facet,
但是在这个狭窄棱面的另一侧
water molecules can stick on the rough edges,
水分子可以粘在粗糙的边缘
and to minimize surface energy,
从而最小化表面势能
the ideal shape of this face would be semicircular.
表面最理想的形状是半圆形
But if only the top few layers of water molecules are mobile
但如果只有顶部的几层水分子是流动性的
to try to lower the surface energy,
能够降低表面势能
many of them diffuse onto the prism facet
其中许多就会扩散反射到棱面
and in the process,
在这个过程中
they exceed the critical density required
他们超越了克服成核势垒的
to overcome the nucleation barrier,
临界密度
and so they can grow the crystal on the prism facet.
所以可以在棱面上形成晶体
So due to this narrow edge
所以由于狭窄的边缘
the nucleation barrier is effectively lower than it would be
成核势垒有效降到
for a large prism facet.
大平面的成核势垒之下
A similar effect happens for the basal facets,
类似的影响出现在基面上
just at a different temperature.
只是在不同的温度
And Ken has done experiments to investigate
Ken做了一些实验以研究
whether these effects are observed in the lab.
在实验室里能否观察到这些影响
– And so I did a series of experiments using that apparatus
我用那些仪器做了一系列实验
and man, it’s just like, boom, just like that.
兄弟 他就像是 砰一下 就是那样的
(laughing) Whoa!
[大笑] 哇
When you make a model,
当你构建一个模型
and you sort of find it’s supposed to do something,
你差不多会发现它能做什么
and it sorta does, it’s just like, this might be right!
就好像是 这个应该是对的
– So far, the results agree nicely with the hypothesis.
到目前位置 结论很好的证明了假设
So after 85 years, maybe we now understand
85年后 没准我们能非常深入的
the molecular physics of ice well enough
理解关于冰的分子物理
to finally explain why snowflakes grow
以最终解释为什么雪花
into such a diverse collection
能够形成
of columnar and plate-like forms.
如此多样化的柱形和板形
– And I’ve done a lot of my career
我已经在天文学
in astronomy and astrophysics.
和天体物理方面做了很多
Nobody ever asks you what it’s good for, I mean, never.
甚至没有人问为什么要做这些 我的意思是 从来没有过
Not even once did anyone say,
没有任何人曾经问过
“What are those black holes gonna be used for?” No,
这些黑洞是做什么用的 并没有
(Ken and Derek laughing)
[Ken和Derek大笑]
Saturn’s rings, “Why do you care about Saturn’s rings?
土星环 ”你为什么关注土星环“
“What’s the motivation for studying Saturn,”
这是研究土星的动力
nobody asks that.
没有人问过
Every time I give a talk, people are like,
每次我做演讲的时候 大家都会问
“What are you doing? What on earth is this for?”
你在做什么 这到底是干什么用的
I’ll tell you the real reason,
我要告诉你真实的原因
the real reason that I got into this.
我研究这些的真实原因
You look at a snowflake and you kind of go,
当你看着雪花 你想着
“Um, actually, (laughs) we don’t have any idea “how that works.”
实际上 [大笑] 我们根本不知道 雪花是怎么形成的
Well, that doesn’t work.
这样不行
We have to know how that works, dammit!
该死的 我们必须知道雪花是怎么形成的
Well, I want to be the guy
我想成为那种
that figures out how snowflakes work.
能搞清楚雪花的形成方式的人
That’s always been a driver.
这总会成为动力
You know, as a scientist, you want to figure something out.
你懂吗 作为一个科学家 你就是想搞明白点什么
(bright electronic music)
[明亮的电子音乐]
– Hey, this video was sponsored by Brilliant,
嘿 这个视频由Brilliant赞助
the interactive learning platform
Brilliant是个互动学习平台
that lets you tackle concepts in math, science
可以让你掌握数学 科学
and computer science.
计算机科学的各种概念
You know, YouTube videos are great for finding out
YouTube视频可以有助于发掘
about new areas of interest,
一些有趣的领域
but if you really want to master a topic,
但如果你真的想掌握一门学科
you have to try problems for yourself,
你必须自己解决问题
and that’s what Brilliant allows you to do.
这是Brilliant能够提供给你的
They’ve recently revamped a lot of their courses
近期他们更新了很多课程
to make them even more interactive,
以实现更强的互动性
like their course on logic.
比如他们的逻辑课程
Here’s a puzzle where you have to sort robots.
这里有个难题 你需要去给机器人分类
The questions increase in difficulty as you go,
问题随着你的进展而逐渐变难
but they’ve always got helpful hints,
但总会由有用的提示出现
so you don’t get stuck.
所以你也不会被卡住
Now, if you enjoyed this video,
如果你喜欢这个视频
I’d recommend you check out their course
我建议你看看
on beautiful geometry.
他们关于美丽几何学的课程
And for viewers of this channel,
对于这个频道的观众
Brilliant are offering 20% off a yearly subscription
Brilliant为前200位注册的人
to the first 200 people to sign up.
提供20%的年度订阅折扣
Just go to brilliant.org/veritasium.
登录brilliant.org/veritasium
Plus, this offer is valid for subscriptions
另外 这个折扣对于
that you gift to others.
你替别人订阅也有效
So, if you know someone who would benefit
如果你知道有人喜欢通过
by exploring STEM concepts in a fun, interactive way,
有趣 互动的方式 探索科学 技术 工程 数学的概念
a Brilliant subscription makes the perfect gift.
Brilliant的订阅会成为很好的礼物
So, I want to thank Brilliant for sponsoring this video,
感谢Brilliant赞助这个视频
and I want to thank you for watching.
感谢收看

发表评论

译制信息
视频概述

有人说 没有两片雪花是相同的 雪花是怎么形成的呢 每一片雪花到底是什么样子 为什么会如此不同 真理元素携手电影冰雪奇缘的雪花顾问一起为您揭秘

听录译者

收集自网络

翻译译者

早早

审核员

审核员EM

视频来源

https://www.youtube.com/watch?v=ao2Jfm35XeE

相关推荐