未登录,请登录后再发表信息
最新评论 (0)
播放视频

未来的自组装计算机芯片

The self-assembling computer chips of the future | Karl Skjonnemand

以前的电脑像一间房间那样大
Computers used to be as big as a room.
但现在已经小到可放入你的口袋
But now they fit in your pocket,
戴在你的手腕上
on your wrist
甚至植入你的身体里
and can even be implanted inside of your body.
多酷啊?
How cool is that?
这之所以能实现
And this has been enabled
是因为电晶体的微型化
by the miniaturization of transistors,
电晶体是电路中的小型开关
which are the tiny switchesin the circuits
位于电脑的核心
at the heart of our computers.
微型化能成功 也是经过科学和工程学
And it’s been achievedthrough decades of development
数十年的发展及突破
and breakthroughsin science and engineering
以及数十亿美元的投入
and of billions of dollars of investment.
但它向我们提供了非常庞大的运算能力
But it’s given usvast amounts of computing,
非常庞大的记忆体以及现在我们大家
huge amounts of memory and the digital revolution
都体验到并乐在其中的数字革命
that we all experience and enjoy today.
但坏消息是
But the bad news is,
我们很快就要碰到数字壁垒了
we’re about to hit a digital roadblock,
因为电晶体微型化的速度正在减缓
as the rate of miniaturizationof transistors is slowing down.
与此同时
And this is happeningat exactly the same time
我们的软件在人工智能及大数据方面
as our innovation in softwareis continuing relentlessly
还在持续不断的创新
with artificial intelligence and big data.
且我们的装置经常要进行
And our devices regularly perform
面部识别或增大现实
facial recognition or augment our reality
或甚至要在我们变化莫测
or even drive cars down our
又混乱的道路上自动驾驶
treacherous, chaotic roads.
真不可思议
It’s amazing.
但如果我们赶不上
But if we don’t keep up
我们软件的胃口的话
with the appetite of our software,
我们的科技发展
we could reach a point
就有可能会达到一个点
in the development of our technology
在这个点 我们能用软件做到的事
where the things that we could do with software could,
其实 会受限于我们的硬件
in fact, be limited by our hardware.
我们都经历过这样的挫折
We’ve all experienced the frustration
老式手机或平板电脑
of an old smartphone or tablet
跑得又慢又辛苦 最后停下来
grinding slowly to a halt over time
因为装在上面的软件
under the ever-increasing weight
更新和新功能带来的负担越来越大
of software updates and new features.
但不久前我们刚买来的时候用着还挺好的
And it worked just fine when we bought it not so long ago.
但饥渴的软件工程师
But the hungry software engineers have
随着时间耗尽了全部硬件的能力
eaten up all the hardware capacity over time.
半导体产业非常清楚这个状况
The semiconductor industryis very well aware of this
且在努力投入各种有创造力的解决方案
and is working on all sorts of creative solutions,
比如超越晶体管进行量子计算
such as going beyond transistorsto quantum computing
或甚至在替代架构当中使用电晶体
or even working with transistorsin alternative architectures
如类神经网络 用以制造更稳健且有效率的电路
such as neural networks to make more robust and efficient circuits.
但这些方法都相当的耗时间
But these approacheswill take quite some time,
针对这个问题
and we’re really looking for a much more
我们真的正在找更及时的解决方案
immediate solution to this problem.
电晶体微型化的速度
The reason why the rate of miniaturization
慢下来的原因
of transistors is slowing down
是因为制造工艺的复杂度不断增加
is due to the ever-increasing complexityof the manufacturing process.
电晶体以前是大型笨重的装置
The transistor used to bea big, bulky device,
直到以纯晶体硅晶片为基础的
until the invent of the integrated circuit
集体电路被发明出来
based on pure crystalline silicon wafers.
持续发展了五十年后
And after 50 yearsof continuous development,
现在我们可以把电晶体的尺寸
we can now achievetransistor features dimensions
缩小到只有十纳米
down to 10 nanometers.
你可以把超过十亿个电晶体
You can fit more thana billion transistors
放入一平方毫米的硅晶体当中
in a single square millimeter of silicon.
更直观来说:
And to put this into perspective:
人类头发的宽度是一百微米
a human hair is 100 microns across.
一个红血球细胞基本上是看不见的
A red blood cell, which is essentially invisible,
其宽度是八微米
is eight microns across,
所以 一根人类头发的宽度
and you can place 12
约可放十二个红血球细胞
across the width of a human hair.
但相较之下 电晶体更小
But a transistor, in comparison,is much smaller,
宽度只有一微米的一小部分
at a tiny fraction of a micron across.
大约两百六十个电晶体排在一起
You could place more than 260 transistors
才等同一个红血球细胞的宽度
across a single red blood cell or more
或者 三千个电晶体排在一起才等同于一根人类头发的宽度
than 3,000 across the width of a human hair.
现在你口袋里的纳米科技真的很不可思议
It really is incredible nanotechnologyin your pocket right now.
除此之外 能够在晶片上放置更多
And besides the obvious benefit
更小的电晶体的一个明显的好处在于
of being able to place more,smaller transistors on a chip,
更小的电晶体也是更快的开关
smaller transistors are faster switches,
且更小的电晶体也是更有效率的开关
and smaller transistors are also more efficient switches.
所以 该组合让我们可以取得成本较低 性能较佳
So this combination has given us lower cost, higher performance
效率较高的电子产品
and higher efficiency electronics
让我们如今可以享用
that we all enjoy today.
要制造这些集体电路
To manufacture these integrated circuits,
电晶体要一层一层打造
the transistors are built uplayer by layer,
在纯的晶体硅晶片上
on a pure crystalline silicon wafer.
用极度简化的方式来表示
And in an oversimplified sense,
电路的每一个小特征都会被投影到硅片的表面上
every tiny feature of the circuit is projected onto the surface of the silicon wafer
并记录在光敏材料中
and recorded in a light-sensitive material
接着通过光敏材料进行蚀刻
and then etched throughthe light-sensitive material
在下方各层留下图案
to leave the patternin the underlying layers.
这些年来 这个流程已经大大的改善
And this process has beendramatically improved over the years
让我们如今使用的电子产品能有这样的效能
to give the electronicsperformance we have today.
但随着电晶体的体征变得越来越小
But as the transistor featuresget smaller and smaller,
我们已经越来越接近这项制造技术的物理极限
we’re really approachingthe physical limitations of this manufacturing technique.
做这种图形的最新系统
The latest systemsfor doing this patterning
已经复杂到
have become so complex
据称每台机器的成本要超过一亿美元
that they reportedly costmore than 100 million dollars each.
半导体工厂有数十台这类机器
And semiconductor factoriescontain dozens of these machines.
所以 大家会质疑:
So people are seriously questioning:
长期来看 这种方法可行吗?
Is this approach long-term viable?
但我们相信我们可以用完全不同
But we believe we can dothis chip manufacturing
且更符合成本效益的方式来制造晶片
in a totally differentand much more cost-effective way
将分子工程及模仿自然的方式
using molecular engineeringand mimicking nature
运用到我们纳米尺度的电晶体上
down at the nanoscale dimensionsof our transistors.
如我前面所说
As I said,
传统制造方式是把电路的微小体征
the conventional manufacturing takes every tiny feature of the circuit
投射到硅晶体上面
and projects it onto the silicon.
但如果你去看集体电路的结构
But if you look at the structureof an integrated circuit,
电晶体阵列
the transistor arrays,
许多体征其实被重复了数百万次
many of the features are repeated millions of times.
它是种高度周期性的结构
It’s a highly periodic structure.
所以 我们想要把这种周期性
So we want to take advantageof this periodicity
应用到我们的替代制造技术上
in our alternativemanufacturing technique.
我们想要用自组装的材料
We want to use self-assembling materials
来自然形成我们的电晶体
to naturally form the periodic structures
所需要的周期性结构
that we need for our transistors.
我们用适当的材料
We do this with the materials,
由材料来完成这些精致图形最难完成的部分
then the materials do the hard workof the fine patterning,
而不是把投影技术
rather than pushing the projectiontechnology
推到极限或极限之外
to its limits and beyond.
在大自然的许多地方
Self-assembly is seen in nature
都可以看到自我组装的例子
in many different places,
从脂质膜到细胞结构
from lipid membranes to cell structures,
因此 我们确信它是个稳健的解决方案
so we do know it can be a robust solution.
如果这对大自然来说非常好的话
If it’s good enough for nature,
那对我们来说也应该如此
it should be good enough for us.
所以我们想要把这种大自然存在的
So we want to take this naturallyoccurring,
稳健的自我组装的方法
robust self-assembly
用在制造半导体的技术上
and use it for the manufacturingof our semiconductor technology.
其中一种自组装材料——
One type of self-assemble material —
叫做嵌段共聚物——
it’s called a block co-polymer —
含有两个聚合物链 长度只有几十纳米
consists of two polymer chains just a few tens of nanometers in length.
但这些链“痛恨”彼此
But these chains hate each other.
它们会互相排斥
They repel each other,
很像油和水
very much like oil and water
或是我十几岁的儿子和女儿
or my teenage son and daughter.
我们用蛮力将它们结合在一起
But we cruelly bond them together,
由于它们彼此排斥
creating an inbuiltfrustration in the system,
所以就形成了内置的阻挠系统
as they try to separate from each other.
有大批这样的材料 有数十亿种
And in the bulk material,there are billions of these,
类似的材料试图黏合在一起
and the similar componentstry to stick together,
而与此同时 对立的材料则试图
and the opposing componentstry to separate from each other
与彼此分开
at the same time.
这系统内置着阻挠与拉力
And this has a built-in frustration,a tension in the system.
它会到处移动 蠕动 直至成形
So it moves around, it squirmsuntil a shape is formed.
自然自组的形状小到纳米级
And the natural self-assembled shapethat is formed is nanoscale,
它有规律 有周期性 范围很长
it’s regular, it’s periodic,and it’s long range,
正如电晶体阵列所需要的那样
which is exactly what we needfor our transistor arrays.
于是我们就可以使用分子工程
So we can use molecular engineering
来设计不同大小的不同形状
to design different shapesof different sizes
以及不同的周期
and of different periodicities.
比如 以一个对称的分子为例
So for example, if we takea symmetrical molecule,
在这个分子中两个聚合物链的长度相近
where the two polymer chainsare similar length,
形成自然自组结构
the natural self-assembledstructure that is formed
是一条很长且蜿蜒的线
is a long, meandering line,
非常像指纹
very much like a fingerprint.
而指纹线的宽度
And the width of the fingerprint lines
和它们之间的距离
and the distance between them
是根据我们聚合物链的长度来决定的
is determined by the lengthsof our polymer chains
此外系统内建的阻挠程度也是一个决定因子
but also the level of built-infrustration in the system.
如果能使用不对称的分子
And we can even createmore elaborate structures
我们甚至可以创造出更精细的结构
if we use unsymmetrical molecules,
不对称的意思就是两条聚合物链的长度明显不同
where one polymer chainis significantly shorter than the other.
在这个情况下形成的自组装结构
And the self-assembled structurethat forms in this case
比较短的链会在中心
is with the shorter chains forming
形成一个紧实的球
a tight ball in the middle,
它的周围则是较长 对立的聚合物链
and it’s surrounded by the longer,opposing polymer chains,
形成一个自然的柱状
forming a natural cylinder.
这个柱状的大小
And the size of this cylinder
以及柱间的距离 周期性
and the distance betweenthe cylinders, the periodicity,
同样也是取决于
is again determined by
我们制造聚合物链的长度
how long we make the polymer chains
以及内置的阻挠程度
and the level of built-in frustration.
换言之 我们用分子工程
So in other words, we’re usingmolecular engineering
来自组纳米尺度的结构
to self-assemble nanoscale structures
可以根据我们的设计来形成线条
that can be lines or cylinders
圆柱大小和周期不同的结构
the size and periodicity of our design.
我们利用化学 化学工程
We’re using chemistry,chemical engineering,
将我们需要的纳米特性
to manufacture the nanoscale features
制作在电晶体上
that we need for our transistors.
但自主组装这些结构的能力
But the abilityto self-assemble these structures
只能带我们走到半路
only takes us half of the way,
因为我们仍然需要
because we still need
将这些结构放置在适当的位置
to position these structures
而这些位置 就是我们希望电晶体在集体电路中摆放的地方
where we want the transistors in the integrated circuit.
但我们广泛运用指引结构
But we can do this relatively easily
就能相对容易的做到
using wide guide structures
确定自组装结构的位置
The pin down self-assembled structures
把它们固定好
anchoring them in place
并迫使其余的自组装结构平行排列
and forcing the rest of the self-assembled structures to lie parallel,
和我们的指引结构相协调
aligned with our guide structure.
比如 我们想做一条四十纳米长的细线
For example, if we want to makea fine, 40-nanometer line,
很难用传统的投影技术来制造
which is very difficult to manufacturewith conventional projection technology,
但我们可以制造一个一百二十纳米的结构引导通道
we can manufacturea 120-nanometer guide structure
用一般的投影技术就能办到
with normal projection technology,
这个通道结构中会有 三条四十纳米互相对齐的线
and this structure will align three of the 40-nanometer lines in between.
如此 材料才能完成最困难的精致图形
So the materials are doingthe most difficult fine patterning.
我们把这个方法叫做“引导式自组装”
And we call this whole approach”directed self-assembly.”
引导式自组装的挑战在于
The challenge with directed self-assembly
整个系统需要近乎完美地符合我们要的排列方式
is that the whole systemneeds to align almost perfectly,
因为结构中若有任何微小的瑕疵都可能会造成电晶体故障
because any tiny defect in the structure could cause a transistor failure.
因为我们的电路上有数十亿个电晶体
And because there are billionsof transistors in our circuit,
我们需要一个接近分子等级的完美系统
we need an almostmolecularly perfect system.
但我们会用非常精准的测量工具来完成目标
But we’re going to extraordinary measures to achieve this,
从化学品的清洁到半导体工厂小心处理这些材料的程序
from the cleanliness of our chemistry to the careful processing of these materials in the semiconductor factory
再到移除最小的纳米尺度瑕疵
to remove even the smallestnanoscopic defects.
所以 引导式自组装是种让人兴奋的颠覆性新技术
So directed self-assemblyis an exciting new disruptive technology,
但它还在开发阶段
but it is still in the development stage.
但我们越来越有信心
But we’re growing in confidence
在接下来几年内 把它作为革命性的新过程
that we could in fact, introduce it to the semiconductor industry as a revolutionary new manufacturing process
引入到半导体产业中
in just the next few years.
如果我们能做到 如果我们成功了
And if we can do this,if we’re successful,
我们将能够把电晶体的成本效益继续微型化
we’ll be able to continue with the cost-effectiveminiaturization of transistors,
继续将计算能力大大扩展
continue with the spectacularexpansion of computing
并带来数字革命
and the digital revolution.
不止如此
And what’s more,
这甚至可能是分子制造 新纪元的黎明
this could even be the dawn of a new era of molecular manufacturing.
这多酷啊?
How cool is that?
谢谢
Thank you.

发表评论

译制信息
视频概述

为你口袋里手机供电的晶体管难以想象的小,这得益于分子新时代的曙光制造业。

听录译者

收集自网络

翻译译者

甪里

审核员

审核员 V

视频来源

https://www.youtube.com/watch?v=F3mzS32SH2Q

相关推荐