ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

量子通信的未来 – 译学馆
未登录,请登录后再发表信息
最新评论 (0)
播放视频

量子通信的未来

The Quantum Internet of the Future

《科学秀》
You’ve just captured the Intel,
你刚刚截获了英特尔
and now you have to get it back to the CIA, ASAP.
现在你必须将资料传回中央情报局
You have the latest encryption,
你拥有最新的加密技术
but there’s still a chance the network could be compromised,
但网络仍有可能遭到入侵
and there’s no way to know.
而且你还蒙在鼓里
Do you risk it?
你敢冒险吗?
This scenario could be from a spy thriller or a video game,
该场景可能来自间谍惊悚片或视频游戏
but it’s not totally absurd.
但并非完全荒谬
In fact, scientists across the globe are working
实际上 全球的科学家正致力于
on a solution to this very problem.
解决这个难题
And this week, physicists at Princeton and the Australian National University
本周 普林斯顿大学和澳大利亚国立大学的物理学家们
have made some progress.
取得了一些进展
In a paper published in the journal Nature Physics,
在一篇发表在《自然物理》杂志的文章中
they announced that they’re a little
他们宣布他们更接近
closer to making a long-range quantum internet a reality.
远距离量子互联网成为现实的目标了
A quantum what? Alright,
量子什么?好吧
we’re going to need to take a step back here.
我们回过头来看看
A quantum internet, which would encode information using tiny particles,
量子互联网 也就是利用微小粒子对信息编码
could be the perfect way to send messages that are completely secure.
这可能会是实现绝对安全信息传输的最佳手段
You’ve probably heard about quantum computing,
你也许听说过量子计算
which uses quantum bits, or qubits,
即利用量子比特 或量子位
instead of the ones and zeroes our regular computers use.
来取代我们常规计算机中使用的0和1
Qubits are special because they’re based
量子位的特别之处就在于
on the physical properties of particles,
它们基于粒子的物理特性
like an electron’s spin.
如电子自旋
An electron’s spin can be up or down,
电子自旋方向分为上或下
but because this is quantum mechanics,
但由于这是量子力学
where everything is complicated and weird to think about,
量子力学不仅复杂 而且难以想象
its spin can also be up and down at the same time.
它的自旋方向是可以同时上下的
That’s what’s known as superposition, where particles like electrons or photons
这就是所谓的叠加 像电子或光子这样的粒子
are in two opposite states at once.
可以同时处于两种相反的状态
It makes no sense in the context of how we normally experience the world,
在我们日常生活世界中这是说不通的
but that’s just the tip of the very, very strange quantum mechanical iceberg.
但是这仅仅是奇特的量子力学的冰山一角
On the scale of tiny particles,
在微粒的尺度上
the classic principles of science start to break down,
经典的科学原理开始崩塌
and things happen that seem like they should be impossible.
事情在看似不可能的情况下发生着
But based on a lot of experiments and math,
但基于大量的实验与数学推导
we know they are happening.
我们知道它们确实正在发生
So even though it can be hard to wrap our brains around it,
所以 即使我们的大脑很难理解它
we’ve just had to accept
我们也必须接受
that particles can do things like be in two opposite states at once.
粒子可以同时处于两种截然相反的状态
With quantum computing,
借助量子计算
we’re using this weirdness to our advantage in two main ways.
借助它的奇怪特性 我们将收获两大好处
First, you can encode more information in a qubit
首先 一个量子位比一个传统的比特位
than in a conventional bit.
可以编码更多的信息
Two conventional bits, for instance, will have one of four
例如 两个传统的比特位可以表示四种
possible values: 00, 01, 10, or 11.
可能值:00 01 10或11
Each qubit, though, can be both a zero and a one at the same time,
然而 每个量子位 可以同时是0和1
so two qubits can be all four possibilities at once.
所以 两个量子位可以一次表示四种组合
As you add more qubits,
如果继续增加量子位数目
the amount of information you can store and process goes up incredibly fast.
你能够存储和处理的信息量将会飞速增长
With a 300 qubit computer,
用一台300量子位的计算机
you could do more calculations at once than there are atoms in the universe.
你能同时进行超过宇宙中总原子数的运算
Basically, a big enough quantum computer would be infinitely more powerful
基本上 一个足够大的量子计算机将比我们使用常规设计
than the best supercomputer we could ever build the regular way,
最好的常规超级计算机还要强大得多
and it’s why physicists have been geeking out over this
这就是为什么物理学家们自从意识到
ever since they realized it was theoretically possible.
它在理论上可行后 便一直在设法实现它的原因
The second main advantage of quantum computing is that
量子计算的第二大优势是
you can use qubits to send information in a way that’s inherently secure.
你可以利用量子位 以绝对安全的方式来发送信息
When you encrypt information,
当你对信息进行加密的时候
you jumble it up so that when you send it,
你可以将其打乱 以便当你发送信息时
anyone listening in won’t be able to decipher the message.
任何收听的人都无法破译信息
But the person you’re sending it to,
但对于你想要发送的那个人
who you actually want to read it,
也就是你实际希望读取它的那个人
needs to be able to decode it,
需要将信息解码
so you send them a key they can use to decrypt the message.
所以你可以向他们发送解码的密钥
Problem is, if someone’s eavesdropping on the key,
问题是 如果有人窃听了密钥
they’ll be able to decode it also.
他们同样可以解密信息
There are lots of ways cryptographers try to get around this,
密码学家尝试了很多方法来解决这一问题
but they all have some flaws,
但是它们都存在缺陷
and in theory could be hacked eventually.
理论上这些方法最终都会被破解
Quantum computing, on the other hand,
而另一方面 量子计算
might be the perfect answer
或可成为完美的解决方案
because of another weird rule of quantum mechanics.
因其有另一奇怪的特性
When you measure something like an electron’s spin,
那就是当你测量像电子自旋之类的东西时
the act of taking the measurement actually
测量的这一行为实际上将
changes some of the electron’s properties.
改变电子的某些特性
So if you use qubits to send your friend Bob a key,
所以 如果你用量子位向你朋友鲍勃发送一个密钥
and your archnemesis Eve intercepts any of the particles before sending them along to Bob,
你的死对头伊娃在它们达到鲍勃之前将其截获下来
you and Bob will be able to tell that
鲍勃和你都能发现
someone messed with the qubits before he got them.
在他收到它之前有人打乱了量子位
In other words,
换句话说
no one can eavesdrop on your key without you knowing about it.
没有人能在你不知晓的情况下窃听你的密钥
This is next-order encryption,
这是一种新型加密方式
and we’d like to take advantage of it.
我们可以好好利用它
But that means having more than one quantum computer,
但这也意味着 需要有多台量子计算机
and hooking them up over long distances.
并将它们进行远距离连接
Basically, we want to build a quantum internet.
基本上 我们要建立的是一个量子互联网
And that’s where this new research comes in.
这就是这项新研究的用武之地
We already have a massive global network of fiber optic cables,
我们已经搭建了庞大的全球光纤网络
so it’d be great to
因此在构建未来的无线网络时
piggyback on our existing infrastructure as we build the internet of the future.
我们将其搭建在现有的基础设施上将会很棒
And fiber optic cables are a pretty good choice,
光纤电缆会是个不错的选择
because you can use photons of light as qubits.
因为你可以使用光子作为量子位
But there are two big challenges.
但其中也有两大挑战
First, to use those fiber optic cables,
首先 要使用这些光缆
you need to transmit photons with a certain wavelength.
你需要传输具有特定波长的光子
And second, qubits are super fragile.
其次 量子位非常敏感
If anything interferes with the particles
如果在传输信息之前
before you transfer your message,
有任何东西扰动了粒子
you’ve lost your data.
你将会丢失数据
So you need to keep your qubits stable.
所以你必须保证量子位的稳定
We’ve already discovered how
我们已经发现如何
to use certain materials to store quantum information for
利用特殊材料来储存量子信息
long enough to send it through a network,
足够长的时间以使其通过一个网络
but they don’t work on the right wavelength
但它们的工作波长与
for our fiber optic cables.
我们的光缆不兼容
And the materials that are compatible with those cables
而那些与光缆兼容的材料
can store information for only a fraction of a second.
只能存储不足一秒的信息
That’s too short.
这也太短了
To solve this problem,
为了解决这个问题
the Australian team wanted to find a way to lengthen that time.
澳大利亚团队希望找到一种方法来延长这一时间
So they started experimenting with a crystal that had some erbium in it.
所以他们开始尝试用含有铒的晶体做实验
Erbium is a rare earth metal,
铒是一种稀土金属
and a crystal with erbium ions in it can work on a wavelength
而含铒离子的晶体可以在与光缆
that matches fiber optic cables,
匹配的波长上工作
but it can only store quantum information for short bursts.
但它只能存储短脉冲的量子信息
To increase that timeframe, the group applied a super-strong 7 Tesla magnet.
为了延长这一时间 团队使用了一个7特斯拉的超强磁体
That’s the strength of the most powerful MRI machines.
这一强度是最强大的核磁共振仪的磁性极限
Magnets are helpful because they can freeze electrons in the crystal in place,
磁体可以将晶体中的电子固定住
which keeps them from interfering with and destroying the data.
从而防止它们干扰和破坏数据
And … it worked!
并且……它很有效!
The magnet increased the crystal’s storage time to 1.3 seconds.
磁体将晶体的存储时间增加到了1.3秒
Now, that might not seem very long,
目前 时间看似不是很长
but it’s a 10,000-fold improvement over what scientists could do before,
但相比以前 这已经提高了1000倍
and it’s good enough for a quantum internet.
并且这对于量子互联网来说已经足够了
Other experts have estimated that with quantum repeaters to boost the signals,
其他专家估计 使用量子中继器来增强信号
you need storage times of just 1 second
你存储一秒的时间
to send messages 1000 kilometers.
可将信息发送到1000公里外
So where’s our quantum internet?
那么 我们的量子互联网将用在哪些领域?
Any kind of widespread network is still a ways off.
用于广播网络目前是不可能的
For one thing, the Australian setup required very low temperatures to work:
首先 澳大利亚团队设置的实验条件需要非常低的温度才能工作——
1.4 Kelvin, or -272 Celsius.
1.4开尔文 或者说零下272摄氏度
That’s seriously cold, and seriously expensive to maintain.
这是相当寒冷的 且维护成本相当高
And of course, there’s that strong magnetic field.
当然 还需要一个强力的磁场
The researchers think their material will still work
研究人员认为他们的材料在
with a less powerful 3 Tesla magnet,
功率较小的3特斯拉磁场中也能工作
but it’s not like that’s nothing.
但带来的改变却并非微不足道
Think of a more typical MRI machine instead of the most advanced.
比如用普通的核磁共振仪取代最先进的
Not exactly chump change.
带来的改变也是显著的
Even if we solve those problems,
即使我们解决了这些问题
quantum networks might never be used for things like watching this video,
量子互联网也许永远不会被拿来看本视频
or to execute run-of-the-mill Google searches.
或是进行普通的谷歌搜索
You know, like ‘quantum repeater’ or ‘erbium crystal’,
而像“量子中继器”或“铒晶体”
they’ll be reserved for super-secret situations
它们被预留给超级机密的场合
when you want your communication to be absolutely secure.
比如当你希望你通信是绝对安全的时候
So maybe your banking,
也许是你的银行业务
but probably more like high-level international intelligence.
但更可能存在于高级国际情报中
Basically, spy stuff.
基本上 就是间谍工作
But no matter who ends up using it,
但无论谁最终用到它
the quantum internet will be a major upgrade
量子互联网都将成为
for the world of cryptography.
世界密码学的重大进步
Thanks for watching this episode of SciShow News,
感谢您观看本集 《科技秀》新闻
and if you want to learn more about quantum computers,
如果你想了解更多有关量子计算机的信息
you can check out an earlier episode we did
请查看我们之前关于
about another amazing quantum computing breakthrough.
量子计算其它突破进展的视频

发表评论

译制信息
视频概述

本视频首先介绍了什么是量子,然后解释了量子位和比特位的区别,接着讲述了量子通信的优势,如它计算能力超强,并且更加的安全。但是,量子通信也有不足,如果将其布置到现有光缆网上,量子信息保存时间不足一秒,如果用含铒晶体保存,时间可延长到1.3秒,但温度必须维持在零下272摄氏度。设想:如果这些问题都被解决,量子通信将被运用到哪些场合?

听录译者

收集自网络

翻译译者

www

审核员

审核员_Y

视频来源

https://www.youtube.com/watch?v=I-w3D_nR4_E

相关推荐