ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

量子通信的未来 – 译学馆
未登陆,请登陆后再发表信息
最新评论 (0)
播放视频

量子通信的未来

The Quantum Internet of the Future

《科学秀》
你刚刚截获了英特尔
You’ve just captured the Intel,
现在你必须将资料传回中央情报局
and now you have to get it back to the CIA, ASAP.
你拥有最新的加密技术
You have the latest encryption,
但网络仍有可能遭到入侵
but there’s still a chance the network could be compromised,
而且你还蒙在鼓里
and there’s no way to know.
你敢冒险吗?
Do you risk it?
该场景可能来自间谍惊悚片或视频游戏
This scenario could be from a spy thriller or a video game,
但并非完全荒谬
but it’s not totally absurd.
实际上 全球的科学家正致力于
In fact, scientists across the globe are working
解决这个难题
on a solution to this very problem.
本周 普林斯顿大学和澳大利亚国立大学的物理学家们
And this week, physicists at Princeton and the Australian National University
取得了一些进展
have made some progress.
在一篇发表在《自然物理》杂志的文章中
In a paper published in the journal Nature Physics,
他们宣布他们更接近
they announced that they’re a little
远距离量子互联网成为现实的目标了
closer to making a long-range quantum interneta reality.
量子什么?好吧
A quantum what? Alright,
我们回过头来看看
we’re going to need to take a stepback here.
量子互联网 也就是利用微小粒子对信息编码
A quantum internet, which would encode information using tiny particles,
这可能会是实现绝对安全信息传输的最佳手段
could be the perfect way to send messagesthat are completely secure.
你也许听说过量子计算
You’ve probably heard about quantum computing,
即利用量子比特 或量子位
which uses quantum bits, or qubits,
来取代我们常规计算机中使用的0和1
instead of the ones and zeroes our regular computers use.
量子位的特别之处就在于
Qubits are special because they’re based
它们基于粒子的物理特性
on the physical properties of particles,
如电子自旋
like an electron’s spin.
电子自旋方向分为上或下
An electron’s spin can be up or down,
但由于这是量子力学
but because this is quantum mechanics,
量子力学不仅复杂 而且难以想象
where everything is complicated and weird to think about,
它的自旋方向是可以同时上下的
its spin can also be up and down at the same time.
这就是所谓的叠加 像电子或光子这样的粒子
That’s what’s known as superposition,where particles like electrons or photons
可以同时处于两种相反的状态
are in two opposite states at once.
在我们日常生活世界中这是说不通的
It makes no sense in the context of how we normally experience the world,
但是这仅仅是奇特的量子力学的冰山一角
but that’s just the tip of the very, very strange quantum mechanical iceberg.
在微粒的尺度上
On the scale of tiny particles,
经典的科学原理开始崩塌
the classic principles of science start to break down,
事情在看似不可能的情况下发生着
and things happen that seem like they shouldbe impossible.
但基于大量的实验与数学推导
But based on a lot of experiments and math,
我们知道它们确实正在发生
we know they are happening.
所以 即使我们的大脑很难理解它
So even though it can be hard to wrap our brains around it,
我们也必须接受
we’ve just had to accept
粒子可以同时处于两种截然相反的状态
that particles can do things like be in two opposite states at once.
借助量子计算
With quantum computing,
借助它的奇怪特性 我们将收获两大好处
we’re using this weirdness to our advantage in two main ways.
首先 一个量子位比一个传统的比特位
First, you can encode more information in a qubit
可以编码更多的信息
than in a conventional bit.
例如 两个传统的比特位可以表示四种
Two conventional bits, for instance, willhave one of four
可能值:00 01 10或11
possible values: 00, 01, 10, or 11.
然而 每个量子位 可以同时是0和1
Each qubit, though, can be both a zero and a one at the same time,
所以 两个量子位可以一次表示四种组合
so two qubits can be all four possibilities at once.
如果继续增加量子位数目
As you add more qubits,
你能够存储和处理的信息量将会飞速增长
the amount of information you can store and process goes up incredibly fast.
用一台300量子位的计算机
With a 300 qubit computer,
你能同时进行超过宇宙中总原子数的运算
you could do more calculations at once than there are atoms in the universe.
基本上 一个足够大的量子计算机将比我们使用常规设计
Basically, a big enough quantum computer would be infinitely more powerful
最好的常规超级计算机还要强大得多
than the best supercomputer we could ever build the regular way,
这就是为什么物理学家们自从意识到
and it’s why physicists have been geeking out over this
它在理论上可行后 便一直在设法实现它的原因
ever since they realized itwas theoretically possible.
量子计算的第二大优势是
The second main advantage of quantum computing is that
你可以利用量子位 以绝对安全的方式来发送信息
you can use qubits to send information in a way that’s inherently secure.
当你对信息进行加密的时候
When you encrypt information,
你可以将其打乱 以便当你发送信息时
you jumble it up so that when you send it,
任何收听的人都无法破译信息
anyone listening in won’t be able to decipher the message.
但对于你想要发送的那个人
But the person you’re sending it to,
也就是你实际希望读取它的那个人
who you actually want to read it,
需要将信息解码
needs to be able to decode it,
所以你可以向他们发送解码的密钥
so you send them a key they can use to decrypt the message.
问题是 如果有人窃听了密钥
Problem is, if someone’s eavesdropping on the key,
他们同样可以解密信息
they’ll be able to decode it also.
密码学家尝试了很多方法来解决这一问题
There are lots of ways cryptographers try to get around this,
但是它们都存在缺陷
but they all have some flaws,
理论上这些方法最终都会被破解
and in theory could be hacked eventually.
而另一方面 量子计算
Quantum computing, on the other hand,
或可成为完美的解决方案
might be the perfect answer
因其有另一奇怪的特性
because of another weird rule of quantum mechanics.
那就是当你测量像电子自旋之类的东西时
When you measure something like an electron’s spin,
测量的这一行为实际上将
the act of taking the measurement actually
改变电子的某些特性
changes some of the electron’s properties.
所以 如果你用量子位向你朋友鲍勃发送一个密钥
So if you use qubits to send your friend Bob a key,
你的死对头伊娃在它们达到鲍勃之前将其截获下来
and your archnemesis Eve intercepts any of the particles before sending them along to Bob,
鲍勃和你都能发现
you and Bob will be able to tell that
在他收到它之前有人打乱了量子位
someone messed with the qubits before he gotthem.
换句话说
In other words,
没有人能在你不知晓的情况下窃听你的密钥
no one can eavesdrop on your key without you knowing about it.
这是一种新型加密方式
This is next-order encryption,
我们可以好好利用它
and we’d like to take advantage of it.
但这也意味着 需要有多台量子计算机
But that means having more than one quantum computer,
并将它们进行远距离连接
and hooking them up over long distances.
基本上 我们要建立的是一个量子互联网
Basically, we want to build a quantum internet.
这就是这项新研究的用武之地
And that’s where this new research comesin.
我们已经搭建了庞大的全球光纤网络
We already have a massive global network of fiber optic cables,
因此在构建未来的无线网络时
so it’d be great to
我们将其搭建在现有的基础设施上将会很棒
piggyback on our existing infrastructure as we build the internet of the future.
光纤电缆会是个不错的选择
And fiber optic cables are a pretty good choice,
因为你可以使用光子作为量子位
because you can use photons of light as qubits.
但其中也有两大挑战
But there are two big challenges.
首先 要使用这些光缆
First, to use those fiber optic cables,
你需要传输具有特定波长的光子
you need to transmit photons with a certain wavelength.
其次 量子位非常敏感
And second, qubits are super fragile.
如果在传输信息之前
If anything interferes with the particles
有任何东西扰动了粒子
before you transfer your message,
你将会丢失数据
you’ve lost your data.
所以你必须保证量子位的稳定
So you need to keep your qubits stable.
我们已经发现如何
We’ve already discovered how
利用特殊材料来储存量子信息
to use certain materials to store quantum information for
足够长的时间以使其通过一个网络
long enough to send it through a network,
但它们的工作波长与
but they don’t work on the right wavelength
我们的光缆不兼容
for our fiber optic cables.
而那些与光缆兼容的材料
And the materials that are compatible with those cables
只能存储不足一秒的信息
can store information for only a fraction of a second.
这也太短了
That’s too short.
为了解决这个问题
To solve this problem,
澳大利亚团队希望找到一种方法来延长这一时间
the Australian team wanted to find a way to lengthen that time.
所以他们开始尝试用含有铒的晶体做实验
So they started experimenting with a crystal that had some erbium in it.
铒是一种稀土金属
Erbium is a rare earth metal,
而含铒离子的晶体可以在与光缆
and a crystal with erbium ions in it can work on a wavelength
匹配的波长上工作
that matches fiber optic cables,
但它只能存储短脉冲的量子信息
but it can only store quantum information for short bursts.
为了延长这一时间 团队使用了一个7特斯拉的超强磁体
To increase that timeframe, the group applied a super-strong 7 Tesla magnet.
这一强度是最强大的核磁共振仪的磁性极限
That’s the strength of the most powerfulMRI machines.
磁体可以将晶体中的电子固定住
Magnets are helpful because they can freeze electrons in the crystal in place,
从而防止它们干扰和破坏数据
which keeps them from interfering with and destroying the data.
并且……它很有效!
And … it worked!
磁体将晶体的存储时间增加到了1.3秒
The magnet increased the crystal’s storagetime to 1.3 seconds.
目前 时间看似不是很长
Now, that might not seem very long,
但相比以前 这已经提高了1000倍
but it’s a 10,000-fold improvement over what scientists could do before,
并且这对于量子互联网来说已经足够了
and it’s good enough for a quantum internet.
其他专家估计 使用量子中继器来增强信号
Other experts have estimated that with quantum repeaters to boost the signals,
你存储一秒的时间
you need storage times of just 1 second
可将信息发送到1000公里外
to send messages 1000 kilometers.
那么 我们的量子互联网将用在哪些领域?
So where’s our quantum internet?
用于广播网络目前是不可能的
Any kind of widespread network is still aways off.
首先 澳大利亚团队设置的实验条件需要非常低的温度才能工作——
For one thing, the Australian setup requiredvery low temperatures to work:
1.4开尔文 或者说零下272摄氏度
1.4 Kelvin, or -272 Celsius.
这是相当寒冷的 且维护成本相当高
That’s seriously cold, and seriously expensiveto maintain.
当然 还需要一个强力的磁场
And of course, there’s that strong magnetic field.
研究人员认为他们的材料在
The researchers think their material will still work
功率较小的3特斯拉磁场中也能工作
with a less powerful 3 Tesla magnet,
但带来的改变却并非微不足道
but it’s not like that’s nothing.
比如用普通的核磁共振仪取代最先进的
Think of a more typical MRI machine instead of the most advanced.
带来的改变也是显著的
Not exactly chump change.
即使我们解决了这些问题
Even if we solve those problems,
量子互联网也许永远不会被拿来看本视频
quantum networks might never be used for things like watching this video,
或是进行普通的谷歌搜索
or to execute run-of-the-mill Google searches.
而像“量子中继器”或“铒晶体”
You know, like ‘quantum repeater’ or ‘erbium crystal’,
它们被预留给超级机密的场合
they’ll be reserved for super-secret situations
比如当你希望你通信是绝对安全的时候
when you want your communication to be absolutely secure.
也许是你的银行业务
So maybe your banking,
但更可能存在于高级国际情报中
but probably more like high-level international intelligence.
基本上 就是间谍工作
Basically, spy stuff.
但无论谁最终用到它
But no matter who ends up using it,
量子互联网都将成为
the quantum internet will be a major upgrade
世界密码学的重大进步
for the world of cryptography.
感谢您观看本集 《科技秀》新闻
Thanks for watching this episode of SciShow News,
如果你想了解更多有关量子计算机的信息
and if you want to learn more about quantum computers,
请查看我们之前关于
you can check out an earlier episode we did
量子计算其它突破进展的视频
about another amazing quantum computing breakthrough.

发表评论

译制信息
视频概述

本视频首先介绍了什么是量子,然后解释了量子位和比特位的区别,接着讲述了量子通信的优势,如它计算能力超强,并且更加的安全。但是,量子通信也有不足,如果将其布置到现有光缆网上,量子信息保存时间不足一秒,如果用含铒晶体保存,时间可延长到1.3秒,但温度必须维持在零下272摄氏度。设想:如果这些问题都被解决,量子通信将被运用到哪些场合?

听录译者

收集自网络

翻译译者

www

审核员

审核员_Y

视频来源

https://www.youtube.com/watch?v=I-w3D_nR4_E

相关推荐