ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

物理学中最困难的问题:量子引力 – 译学馆
未登陆,请登陆后再发表信息
最新评论 (0)
播放视频

物理学中最困难的问题:量子引力

Quantum Gravity and the Hardest Problem in Physics | Space Time

广义相对论和量子力学
Between them, General Relativity and Quantum Mechanics
似乎能解释一切可观测现象
seem to describe all of observable reality.
然而 它们却不能同时成立
And yet, they can’t be simultaneously true.
必须有一个更深层次的未知理论将它们统一起来
They must be united in a deeper, yet undiscovered theory.
物理学界的泰斗们 已经付出了一个世纪的努力
After a century of work by the greatest minds in all of physics,
为什么统一的希望依然渺茫?
why does this union still elude us?
20世纪的前几十年中
The first few decades of the 20th century was
物理学领域不断涌现奇迹
a time of miracles for physics:
首先是爱因斯坦的相对论彻底改变了
First, Einstein’s relativity utterly changed the way we think
我们对空间 时间 运动和引力的观念
about space, time, motion and gravity.
随后 20年代到30年代的量子革命
Then, the quantum revolution of the 20s and 30s
推翻了我们对亚原子世界的所有直观认识
overturned all of our intuitions about the subatomic world.
在广义相对论和量子力学的共同帮助下
Together, General Relativity and Quantum Mechanics have allowed us to explain
我们得以解释几乎所有观测到的基本现象
nearly every fundamental phenomenon observed,
并且预测了许多不可思议的现象
and they’ve predicted many unexpected phenomena
这些预测也最终得到了证实
that have since been verified.
然而从根本上看 这两个理论相互矛盾
And yet, these two theories contradict each other in fundamental ways.
物理学黄金时代以来的这一整个世纪中
In the century since that golden era of physics,
物理学界一直在尝试统一二者 却未能成功
we’ve been trying to reconcile the two, without success.
但今天的《PBS太空》节目中
But today on Space Time
我们将开始讨论实现二者统一的伟大探索:
I’m going to begin our discussion of the great quest for the union:
对量子引力理论和大一统理论的探索
the quest for a theory of Quantum Gravity and for a Theory of Everything.
这是一个宏大的话题
This is a big topic,
所以在本期视频中我要先抛给你们一个问题
so in this episode I want to give you the motivation.
广义相对论和量子力学的矛盾
What exactly are the conflicts between
究竟是什么?
General Relativity, or GR, and Quantum Mechanics?
我将在以后的节目中再给出解答
I’ll save the solution for future episodes.
让我们先总体说一下
Let’s start with summaries.
广义相对论是爱因斯坦关于引力的伟大理论
General Relativity (GR) is Einstein’s great theory of gravity.
在这个理论中 质量和能量的存在
In it, the presence of mass and energy warp
使时空发生弯曲
the fabric of space and time,
物体的运动也会随之改变
and the motion of objects is thereby altered.
这就形成了我们眼中的引力现象
This results in the effect we perceive as gravity.
广义相对论中包含了早期的狭义相对论
General Relativity incorporates the earlier Special Relativity
狭义相对论描述了我们对时空的感知是如何与运动相关的
which describes how our perception of space and time also depend on motion.
之前艾萨克·牛顿认为
Unlike the earlier ideas of Isaac Newton
时间和空间是相互独立且绝对的
in which space and time are treated as separate and universal,
而广义和狭义相对论则与其不同
Special and General Relativity
它们把时间与空间混合成一个联合可变的时空
blend them together into a combined, mutable spacetime.
广义相对论描述的是浩渺无垠的宇宙
Where General Relativity describes the universe of the large and the massive,
而量子力学讨论的是亚原子世界
Quantum Mechanics talks about the subatomic world.
它将粒子描述为有无限可能的波
It describes particles as waves of infinite possibilites,
其观测属性本质上是不确定的
whose observed properties are intrinsically uncertain.
我们对宇宙的经验认知好像是
Our experience of the universe appears to be plucked
从这个概率图景中以一种奇怪
from this landscape of possibilities in strange,
但可以数学预测的方式采集下来的
but mathematically predictable ways.
这种数学方法从薛定谔方程开始
That math started with the Schrödinger Equation,
它追踪概率波在时空中的分布
which tracks these probability waves through space and time,
但薛定谔方程仍然以老式的牛顿观点
but the Schrödinger Equation treats space and time
将时间和空间视为根本独立的
as fundamentally separate in the old-fashioned Newtonian way.
很明显这是有问题的
So clearly there’s a problem.
我们已经说过 保罗·狄拉克是如何用
We already talked about how Paul Dirac fixed
电子的相对论波动方程解决部分问题的
part of the problem with a relativistic wave equation for the electron.
如今 现代量子场论完全融合了
Nowadays, modern quantum field theories fully incorporate
狭义相对论提出的融合时空的概念
the melding of space and time predicted by special relativity.
但至今它们还未直接体现出
And yet they still don’t directly incorporate
广义相对论关于时空扭曲的效应
the warping of space and time predicted by General Relativity.
这造成了许多问题
This causes issues;
有些是轻微的可修复的 有些却是灾难性的
some mild, fixable, others catastrophic.
首先来看轻微的问题
Starting with the mild we have,
黑洞信息悖论
the Black Hole Information Paradox,
我们已经详细地讲过了
we’ve gone on about that at length.
单纯的广义相对论认为
The black holes of pure General Relativity
黑洞会吞噬信息
swallow information in a way that
从而彻底将其在宇宙中抹去
can remove it completely from the universe
当黑洞通过“霍金辐射”蒸发时尤为如此
Especially when those black holes evaporate via Hawking radiation.
而这和量子理论有非常大的冲突
That’s a big conflict with Quantum Theory right there,
量子理论认为量子信息永远不会被破坏
which tells us that Quantum information should never be destroyed.
但“霍金辐射”的存在
But then there’s Hawking Radiation
似乎部分地解决了信息悖论
who offers part of the solution for the information paradox.
经过霍金 雅各布·贝肯斯坦
Following the work of Hawking, Jacob Bekenstein,
赫拉尔杜斯·霍夫特和其他人所做的研究
Geradus ‘t Hooft, and others
我们已经弄清 被黑洞吞噬的信息
it has become clear that information swallowed by black holes
能通过“霍金辐射” 回到宇宙里
can be radiated back out into the universe via the Hawking Radiation
某种意义上 信息悖论产生的根源及其解答
In a sense both the source and the solution to the information paradox
都来自于“霍金辐射”的发现
came from the discovery of Hawking Radiation
实际上霍金找到了一种
Hawking actually derived the latter
统一广义相对论和量子场论的方法 从而推导出后者
by finding a way to unite General Relativity and Quantum Field Theory.
但这种统一只是近似而不完全的
But that union was approximate and incomplete.
确实 这是个天才的构想
Really it was a brilliant hack.
你可以查看往期视频了解相关内容
And you can check out previous episode for the gory details.
事实上 把广义相对论的曲线几何硬塞进
In fact, it’s very possible to shoehorn the curved geometry of General Relativity
量子场论处理时空的方式中是可能的
into the way Quantum Field Theory deals with space and time.
但较小的时空尺度上有强大的引力效应时
But that approach completely fails when you have
这种方法就彻底失效了
strong gravitational effect on a smaller scale of space and time.
比如在黑洞的中心奇点
Like the central singularity of a black hole.
或者大爆炸的瞬间
Or at the instance of the big bang
这时你需要一个真正的量子引力理论
For that you need a true Quantum Theory of Gravity
然而只需考虑一下小尺度下扭曲空间的结构
But even thinking about the structure of curved space in smaller scales
就会导致混乱和灾难性的冲突
leads to craziness and catastrophic conflicts
我想用两种方法来探讨
I want to talk about these in two ways.
首先是非常概念性的讨论
First, very conceptually;
然后更加技术性的讨论
Then, a bit more technically
我们首先来思考一下
Let’s start by think about what it means to
在引力场中精确定义一个位置意味着什么
define a location in the gravitational field with perfect precision
换言之 探讨空间结构中
Or in other words, what it means to talk about
极其微小的一块意味着什么
very very tiny chunks in the fabric of space
为了测量空间中某个位置
In order to measure a location in space,
比如要确定一个粒子的位置
Say a location of a particle,
需要与它产生相互作用
you need to interact with it
通常人们用光子或其它粒子与它相撞
You will typically do that by bouncing a photon or other particle off the object
你想测得的位置越精确
The more precisely you want to measure a position
相互作用所需的能量就越高
the higher the energy of that interaction
所以我们需要电子显微镜和x光
That’s why we use electron microscopes or x-ray
甚至伽马射线来拍摄极小的物体
or even gamma ray to take images of extremely small things.
比如 我们用粒子加速器产生的粒子束撞击一个粒子
So, let’s say we shoot a particle with the beam from the particle accelerator
从而极其精确地测定它的位置
to measure its location with extreme precision
海森堡不确定性原理告诉我们
Heisenberg uncertainty principle tells us
给定测量精度下所需的最小粒子束能量
the minimum energy of our beam for a given precision
事实证明 将一个粒子的位置精确到一普朗克长度
It turns out that to measure a position to a accuracy better than a Planck length
也就是大约10^-35米
around 10^-35 meter
需要在那个空间内投放的能量
the amount of energy you would need to put into that region of space
将会形成一个
would make a tiny black hole
直径为一普朗克长度的迷你黑洞
with an event horizon one Planck length in diameter
想测量得越精准 所需的能量就越多
Try to measure more precisely, and you’d need more energy
就意味着可能会形成更大的黑洞
that means you would make a even larger black hole .
所以 广义相对论和海森堡原理告诉我们
So, General Relativity plus Heisenberg say
我们不可能测量比普朗克长度还小的长度
it is impossible to measure lengths smaller than the Planck length
也许有人记得
Several of you will remember
海森堡不确定性原理讨论的是
that the uncertainty principle talks about the tradeoff
位置和动量之间的权衡关系
between position and momentum
但更大的动量意味着更多的能量
but larger momentum also means larger energy
不确定性原理同时也定义了
the uncertainty principle also defines the precision tradeoff
时间和能量精确度的权衡关系
between time and energy
因此 相同的论证也适用于时间片段
So the same argument can be used to suggest a fragmentation of time
尝试测量任何比10^-43秒 也就是普朗克时间还短的时间段
Try to measure any time period shorter than 10^-43 seconds
就会“轰”的一声 黑洞出现了
the Planck time, and boom, black hole
有的观众可能看过我们关于
For those of you who already watched our episode on
海森堡不确定性原理的视频
the Heisenberg uncertainty principle
那么还有另一种思路
Here is another way to think about this,
我们知道 一个位置精确度非常高的粒子
we’ve known that for a particle to have a highly defined location
它的位置波函数
its position wave function needs to be constructed
需要大范围内的动量波函数共同构建
from a wide range of momentum wave functions that include
包含极高的频率或动量的波函数
extremely high frequencies or extremely high momenta i.e.
也就是说 它的位置越精确 动量越不确定
i.e. the more certain its position or the less certain its momentum
巨大的动量才可能出现
and so large momenta are possible.
因此 比普朗克长度还精确的位置是可定义的
So position can be defined to within a Planck length
但粒子的动量会变得极为不确定
and then momentum becomes extremely uncertain
可能会出现高得离谱的数值
and includes the possibility of ridiculously high values
这意味着它的动能也会高得离谱
That means with ridiculously high kinetic energies
初始位置精确到普朗克长度以内的粒子
Particles which initial positions are defined wtihin a Planck length
能自发地变成黑洞
can spontaneously become, black holes.
当然 这些黑洞并未真的形成
Of course, those black holes don’t really happen.
相反 这个荒谬的推论告诉我们
Rather, there’s an absurdity that tells us
我们对量子论或广义相对论
something is missing in our description
两者或其一在极小尺度下的描述
of either Quantum Theory or General Relativity or both
存在一些疏漏
at the smaller scales
我们来看看真正的冲突
Let’s look at the real conflict.
标准量子理论将时空结构视为
Standard quantum theories treat the fabric of spacetime
诡异的量子现象所发生的底层场所
as the underlying arena on which all the weird quantum stuff happens.
在这样合理的底层结构上
Given that sensible underlying structure,
应用量子原理或是量子化大部分自然力都相对常规
It’s relatively routine to apply quantum principles or quantize most of the forces of nature.
比如 将电场和电磁场量子化后
For example, classical electromagnetism becomes quantum electrodynamics
经典电磁学便成了量子电动力学
when you quantize the electronic field and the electromagnetic field.
但在新的数学表述中
But in the resulting math,
量子场仍然以光滑连续时空为基础
the new quantum fields still lie on top of a smooth continuous grade of space and time.
那么如果要将引力量子化呢?
So what if you want to quantize the gravity?
引力场并非存在于时空基础之上
The gravitational field doesn’t lie on top of space or time,
它本身就是时空
it is spacetime.
要将引力量子化 必须将时空本身量子化
To quantize gravity, you have to quantize the spacetime itself.
这样新的理论就没有一个独立的坐标系来作为基础
That leaves no clean coordinate system on which to ground your theory.
听起来很恼人
It sounds annoying.
事实上这是个灾难
In fact it’s a disaster.
它会导致几个问题
It leads to several problems.
但我会重点关注其错误预测了普朗克尺度下的疯狂涨落的问题
But I’ll focus on the one that wrongly predicts these crazy fluctuations on the Planck scale.
按照广义相对论
In General Relativity,
质量或能量的存在会使引力场弯曲
presents of mass or energy warps the gravitational field.
任何能量都无一例外地造成时空弯曲
There can be no exceptions, any energy must cause spacetime curvature.
否则你甚至可以造出永动机
If not, you could build perpetual motion machines,
比如 应用卡西米尔效应就可以
for example, using the Casimir Effect.
在量子引力理论中
In quantum gravity,
引力本身就是量子化的时空中的激发
gravity itself becomes an excitation in our quantized spacetime.
而激发产生的能量会导致更多的时空扭曲
The energy of those excitations should themselves precipitate more spacetime curvature
表示为进一步的激发
represented as further excitations.
换句话说 引力会产生更多的引力 以至无穷
In other words, gravity should produce more gravity ad infinitum.
这种自作用或自能
This type of self-interaction or self-energy
也出现在其它量子场理论中
is seen in other quantum field theories,
也是很棘手的
it’s hard to deal with even there.
例如在量子电动力学中 由于电子自身的电荷
For example, in quantum electrodynamics, electron has a self-interaction
处于它自己产生的电磁场中 从而它有自作用
due to its electrical charge messing with the surrounding electromagnetic field.
在量子电动力学中 这种作用通过微扰理论来解决
In QED, the mess is fixed with something called perturbation theory,
微扰理论是一种计算复杂相互作用的方案
It’s a scheme to calculate a complex interaction
比如将电子周围复杂混乱的电磁场等效于
like the buzzing electromagnetic field around an electron
一个简单易懂的相互作用加上一系列的修正项
with a series of corrections to a simple well understood interaction
这个相互作用可能是单电子与静态电磁场的相互作用
which might be the electron in a quiet electromagnetic field.
我们在关于“g因子”的一期中对此做过更多的讨论
We talk about this more in our episode on the g factor,
在标准模型的量子场论中 微扰理论贯穿始终
so perturbation theory is applied through out quantum field theories of the standard model
它之所以有效
and it works because
其一是因为这些修正很小
1, this corrections are small and all
其二 即使在修正无限大的情况下
2, even in the case where the corrections be a large raving infinite,
也还有约束存在
there can be constraint.
可以对一些简单数据进行实际的物理测量
There can be brought-back to reality by actual physical measurements
从而将其带回现实中 这个过程称为重整化
of a few simple numbers in the process called renormalization.
例如 测量电子的质量和电荷
For example, measurement of the mass and charge of electron
可以将量子电动力学重整化
renormalizes quantum electrodynamics
从而不可思议地解决电子自能的计算问题
to allow incredibly process calculation of the electron’s self-energy.
但所有这些在你试图将广义相对论量子化时都会失效
None of these works when you try to quantize general relativity.
当在量子尺度上有很强的引力作用时
When you have strong gravitational effects on the quantum scale,
自能修正会发散为无穷大
the self-energy corrections blow up to infinity.
但是与其它量子场理论不同
But unlike other quantum field theories,
并没有简单的观测量可以重整化这些修正
there’re no simple measurements you can do to renormalize those corrections.
事实上 这需要无穷多的观测量来做重整化
In fact, you will need infinite measurements to do so.
我们说量子化的广义相对论时空是不可重整化的
We say that a quantized spacetime of general relativity is non-renormalizable.
量子化广义相对论的不可重整性
The non-renormalizability of quantized general relativity
与精确定位粒子会产生黑洞的想法相关
is connected to the idea that precisely localize particles produce black holes.
普朗克尺度下 时空不再是我们熟悉的那样
Space and time simply can’t behave in a familiar way below the Plank scale.
所以将时空和引力量子化的最简单方法一定是错的
And so the simplest approach to quantizing gravity and spacetime must be wrong.
从爱因斯坦本人开始 几代物理学家倾尽一生期望解决这个问题
Generations of physicists starting with Einstein himself spent their lives trying to fix this,
从而将量子力学和广义相对论结合起来
to unite quantum mechanics and general relativity,
他们的征途仍在继续
they’re still trying.
即使我们还没有取得公认的重大突破
Even though we still lack an accepted revolution
这些努力也并非毫无进展
the struggle has not been without progress.
有两种主要的研究思路
There are two main approaches.
其一是找到一种方法将广义相对论量子化
One is that you search for a way to quantize general relativity
同时避免无穷大和不可重整性
in a way that avoids the infinities and non-renormalizability.
一个主流的例子就是圈量子引力理论
A leading example of this is loop quantum gravity.
另一种思路是假设广义相对论和可变时空本身其实是
Or you just assume the GR and indeed the mutable fabric spacetime itself
一个比目前理论更深层的量子理论所表现出的现象
are emergent phenomena from a quantum theory deeper in our currently accepted theories
这正是弦论所探寻的方向
that’s exactly what string theory seeks to do.
在未来几期中
in upcoming episodes,
我们将探讨这些以及其它一些巧妙的方法
we’ll explore these and other ingenious approaches
以寻找解决当代物理学最伟大问题的突破口
to crack the greatest problem of modern physics,
从而探寻一种量子时空理论
the quest for a theory of quantum spacetime.
各位 我们已经有段时间没有号召大家在Patreon上赞助了
Hey everyone, so we haven’t done a Patreon shout-out in a while,
为啥呢? 因为Patreon上的支持者们已经跟我们在Google Hangouts上沟通过了
Why? Because the Patreon crew already hangs out with us on Google Hangouts
也和我们的内容选择团队聊过 主要还是在Patreon网站上交流
and on the content selection team and in general on the Patreon site.
想跟我们互动吗?
Wanna hangout with us?
我们非常期待您的参与
Please, we would love to have you.
再说几句题外话
But I digress,
感谢所有支持或赞助我们的人
thank you so much Patreon supporters,
是你们让我们的工作得以顺利进行
you make all of these much easier for us.
在这里 尤其要感谢Justin Lloyd
And today, a special huge “thank you” to Justin Lloyd.
他的贡献非常非常大
whose contributing at the quasar level.
Justin 为了表达我们的谢意 我们会送你一盒
Justin, as special thanks, we send you a box of
普朗克尺度的黑洞夹心巧克力
chocolate covered Planck scale black holes.
如果我们对霍金辐射的理解是正确的
If our understanding of Hawking Radiation is right,
那它们在送达时早就不幸蒸发掉了
they will evaporate catastrophically long before they reach you.
如果你还是收到了请告知我们
let’s know if you get them
这对于修正某些黑洞理论真的很有帮助
it really help us constrain some black hole theory
好的 我想点评一下大家的回复
Ok, so I want to comment responses
今天的内容涵盖了黑洞熵之谜和挑战问题那一期
today we’re covering both the black hole entropy enigma and the challenge question episode
就是宇宙包含了多少信息那个问题
how much information does the universe contain
有人问 为什么黑洞事件视界的表面积只能永远增大
A few of you ask why does that the surface area of the blackhole’s event horizon must always increase?
而它的质量和半径实际上却可以减小?
And how mass and radius can actually decrease
我们先来讨论后者
Let’s talk about the latter.
当两个黑洞合而为一
When two black holes merge,
大量能量会以引力波的形式散发
a lot of energy is pumped into gravitational waves.
这些能量只有一个来源
There’s only one place for the energy to come from,
那就是黑洞的质量
the mass of the black holes.
因此 最终合并的黑洞质量
As a result, the mass of the final merged black hole is smaller
小于两个原始黑洞的质量总和
than the sum of the masses of the 2 originals
黑洞的视界半径与质量成正比
Horizon radius is proportional to mass
所以合并后黑洞的半径
And so the radius of the final Black hole
小于原来两个黑洞的半径和
is smaller than the sum of the radii of the originals.
然而新生成的黑洞的质量和半径仍然大于
yet the final black hole is both more massive and larger than
任意一个单独的原始黑洞
either of the original black holes taken separately.
然后我们讨论彭罗斯过程
Then is the Penrose process.
把物体抛向接近黑洞但不会被吸入的轨道上
It’s possible to extract energy from the rotating black hole
可以从旋转的黑洞中提取能量
by throwing objects on near-miss trajectories.
旋转的黑洞会牵引它附近的空间
The rotating black hole drags space around with it,
抛来的物体会吸收黑洞的一些旋转动能
and incoming object absorbs some of that rotational energy
并以更高的速度被抛出
and get flung out at a high speed.
黑洞旋转动能的损失
The loss of the rotational energy by the black hole
也意味着质量的损失
also meant a loss of mass
但旋转的黑洞形状略扁
but rotating black holes are slightly squished
当它损失其自旋或角动量时 它会变得更圆一些
as they lose spin, angular momentum, they become more spherical
在这个过程中 事件视界只是改变了形状
In that process, the event horizon only changes shape
并未损失表面积
It doesn’t lose surface area.
网友“dabeste”指出 很重要的一点是
“dabeste” points out that it’s important to emphasize
你要强调你在讨论的是可观测的宇宙
that you are talking about the observable universe
而非整个宇宙
not the entire universe
我完全同意这点
and I totally agree.
对于有疑问的观众我在此申明
For those of you who have doubts
挑战问题问的是存储可观测宇宙的全部信息
the challenge question is asking for the size of the storage device
所需要的存储设备的容量
needed to store all of information in the observable universe
我在那一期节目开头强调了可观测
I said observable near the start of the episode
但后来有几次我漏掉了“可观测”这个前提
but I dropped that observable part a couple of times later on
这是我的错
that’s my bad.
网友“voodooD0g”指出 真空并非真的空无一物
voodooD0g points out the vacuum isn’t really empty
其间不断有虚拟粒子产生又湮灭
while all the virtual particles popping into and out of existence
那么它们的信息呢?
so what about their information
实际上 这些虚拟粒子不含任何信息
well actually, those don’t contain information
因为从普通粒子的意义上说 它们并非真实的粒子
because they aren’t real in the sense that we think of normal particles.
幽灵虚拟粒子代表的
the phantom virtual particles represent both
既可以是粒子的缺失 也可以是粒子的所有可能性
the absence of particles and every possibility of particles
但这两种情况都没有可以追踪的特定量子态
but in both cases, there’s no specific defined state to give track of
没有真正的量子态就意味着没有信息
no real quantum states means no information
除了也许有些信息 它们用来追踪像真空能量这样的整体性质
except perhaps whatever information you need to track the bulk properties like vacuum energy.
网友“youtueb akount”问宇宙是否曾处于一个
youtueb akount asked whether the universe has ever been in the state
在很小空间内有大量信息的状态
of too much information in too little space
尤其在大爆炸时期
particularly during the Big Bang.
这确实是个很棒的问题
That really is a great question.
事实上这是个额外的额外奖励问题
In fact it’s a great extra extra credit question.
我会确保从提交了答案的观众中
I’ll make sure one of our winners is selected
选出一名获奖观众
from those who answer this question in the submission.
提示:你需要跳出以事件视界面积为变量的
Clue: you need to go beyond the formula for the Bekenstein bound
贝肯斯坦界限方程
in terms of event horizon surface area
用更基础的以半径和所含能量为变量的方程去求解
the more fundamental formula is in terms of radius and contained energy.
试试吧
Have at it.
网友“Rubbergnome”怀疑黑洞信息悖论的霍夫特解答
Rubbergnome is skeptical about the ‘t Hooft solution to the black hole information paradox
提醒我们不要忽略其它有趣的思想
and cautions that we don’t neglect other interesting ideas
比如互补性 膜范例 毛毛球以及全息理论
like complementarity, the membrane paradigm, fuzzballs and holography.
好吧 说实话我们在信息悖论那一期提到过互补性理论
Well to be fair we did mention complementarity in the information paradox episode
以及霍夫特的理论 它是通往全息理论的关口
and ‘t Hooft’s ideas as a gateway to holography
我们将会讨论毛毛球理论 或者其更广为人知的名字黑洞三重假设
We’ll get to fuzzballs or better known as the black hole triple hypothesis.

发表评论

译制信息
视频概述

本视频探讨了广义相对论和量子力学之间的矛盾以及将它们统一的主要思路。

听录译者

收集自网络

翻译译者

Alef

审核员

审核员 EM

视频来源

https://www.youtube.com/watch?v=YNEBhwimJWs

相关推荐