未登录,请登录后再发表信息
最新评论 (0)
播放视频

会飞的昆虫机器人

Meet the Autonomous Insect Robots That Will One Day Swarm the Skies

It has wings, a “brain”,
它有翅膀 大脑
and is the world’s first insect-sized drone
是世界上第一架昆虫大小的
able to wirelessly take flight.
可以无线飞行的无人机
It’s RoboFly,
它就是RoboFly
a member of an entirely new class of flying robots.
全新飞行机器人中的一员
And its specialties aren’t limited to the sky:
而它的独特之处在于 并不局限在空中
it can navigate obstacles on land and in the water, too.
它还可以在陆地和水面上来去自如
The team behind this latest innovation
这项最新创造 背后的研究团队
is from the Autonomous Insect Robotics Laboratory,
来自华盛顿大学的自主昆虫机器人实验室
or AIR Lab, at the University of Washington.
简称为AIR Lab
Their founding goal was to build a new class of autonomous robots
他们的研究目标是 研制一类新的
modeled entirely after insects.
仿照昆虫的自主机器人
Using nature as a guide for human-built systems and structures
这种从大自然中为人造系统与结构寻求灵感的技术
is a practice known as biomimicry.
便是众所周知的仿生学
The idea is that we can solve our difficult design problems
其思想是 通过观察大自然解决自身难题的方法
by looking at how nature solves them.
来解决我们遇到的设计难题
In the case of tiny autonomous bots,
具体到这种微型的自主机器人
this can include things like figuring out what wing shape is most aerodynamic,
就包括 比如找出哪种形状的翅膀最符合空气动力学原理
or even how to mimic the mechanical performance of natural muscles.
甚至是如何模仿天然肌肉的机械性能
Biomimicry can also help us design more sustainable energy storage systems, too,
仿生学也能帮我们设计出更可持续的能源储存系统
another major hurdle towards achieving full automation.
这是实现完全自动化的另一个主要障碍
That could mean creating machines that aren’t weighed down
这可能意味着需要创造
with motors, batteries and cords…
没有马达 电池和电线等负重
but are instead able to power themselves!
但依然能为自己充电的机器!
Because so far,
因为直到现在
finding ways to power bots for long periods of time
要找到能够给机器人长时间供电
without interfering with their mechanical performance
但又不影响其机械性能的情况下的方法
has been hard.
都是很困难的
But the AIR Lab team
但是AIR Lab的团队
is close to cracking nature’s code.
已经接近破解自然密码
They had their first big success in 2018,
他们在2018年取得了第一次巨大成功
when their RoboFly became the first micro-bot to fly tether-free.
所研制的RoboFly成了第一个能够进行无接触式飞行的微型飞行器
Simply by pointing a laser beam
只要将激光束照射到
at a photovoltaic cell, or solar cell, embedded in its wings,
嵌在翅膀上的光伏电池或太阳能电池上
RoboFly was able to fly all on its own.
RoboFly就能够自己飞行
A built-in circuit allowed for 240 volts to execute the cell,
内置电路能使电池输出电压达到240伏
which a controller then sent out in waves
一个微控制器会发出波浪式的动作
to mimic the fluttering of a real insect’s wings.
来模拟真实昆虫翅膀的拍打过程
A microprocessor brain was also added into the circuit board
将微处理器“大脑”也被嵌在电路板上
so that it could help decide how and when to flap.
来告诉机器人何时以及如何振翅
this’s all very cool,
这些都很酷
but RoboFly was still a bit one-dimensional,
但是RoboFly的移动仍然只是一维的(只能起飞和降落)
so in 2020 its developers gave it a reboot.
因此在2020年 它的开发者对其进行了重启
With a framework folded out of a single laminate sheet,
由一张折叠的层压板组成的底盘
it can now be made without having to deal with tons of tiny parts.
使得无需众多微型零件就可以制造机器人
It was also built not only to fly,
它被制造成不仅仅可以飞
but to walk on the ground
而且可以在地上走
and drift in the water.
还能在水面上游的(无人机)
This ability to navigate all types of terrain
RoboFly具备的在各种地形之间游走
and switch between different types of locomotion
和在不同运动模式间进行切换的能力
got the team one step closer to its goal of mimicking its biological counterpart.
使得研究团队向实现仿生功能的目标又迈进了一步
Because who wouldn’t want to be as multi-talented as a fly?
因为谁不想和苍蝇一样多才多艺呢
But the biohybrid breakthroughs don’t stop there.
但混合生物的突破并不止于此
Researchers at Harvard University
哈佛大学的研究人员
—including the creator of RoboFly—
同RoboFly的研制者一起
chose another one of nature’s little helpers, the bee,
选择了大自然中的另一个小帮手 蜜蜂
as their model for a breakthrough bot named Robobee.
作为他们突破性的机器Robobee的模型
One of the smallest flying drones ever developed,
作为有史以来最小的无人机之一
Robobee has undergone many exciting transformations
自2009年团队启动项目以来
since the team launched their project in 2009.
Robobee已经经历了许多令人兴奋的转变
To be clear,
更确切的说
tiny robotic insects capable of flying around completely independently
能够完全独立地飞行的微型机器人昆虫
isn’t just a pure practice in one-upping nature.
并非纯粹为了超越自然的实践
These self-powered microbots could be hugely helpful in task-specific applications.
这些自我供电的微型机器人在某些特定任务中将发挥巨大作用
Specifically ones that require accessing hard-to-reach places—
特别是那些需要进入难以到达的地方的任务
like checking dangerous industrial equipment
比如 危险工业设备的检查
and assisting in disaster recovery.
和灾难恢复中的协助工作
There’s also the potential for them to act like little environmental recorders:
它们也有成为小小环境监控员的潜力:
sniffing out fires and detecting dangerous chemical leaks.
嗅探火灾和监测危险化学品泄漏
The team behind RoboFly even wants to use it to study
RoboFly背后的研究团队甚至想要用它来研究
the behavior of the living insects that inspired its very own creation.
激发昆虫自我创造力的行为
But we’re still a long way off
但是要在任务执行中实现
from partnering with sophisticated autonomous microbots to accomplish tasks,
和复杂的自主微型机器人的协作 我们仍有很长一段路要走
because developing them is still pretty tricky.
因为开发新技术是很困难的
And while RoboFly is still an improvement on all other existing systems,
尽管RoboFly对所有的现有系统来说是很大的改进
it still needs some finessing
但要实现商业化
before going commercial.
仍需要进行精细化的完善
But practice really does make perfect—
然而 熟能生巧
and we can’t wait for the day
我们迫不及待地想看到
when these tiny bots hit the sky, the ground,
这些微型机器人飞天走地
or the water running!
或是在水上游走的一天!
While robotic insects are on their way,
在机器人昆虫实现的过程中
real insects might be harder to come by.
真正的昆虫可能愈加难寻
To learn more about how one simple task can help
为了进一步了解一项简单的任务
stave off mass insect extinction,
是如何帮助昆虫避免大规模灭绝的
check out this video here.
请浏览这个视频
Let us know down in the comments
请在评论中告诉我们
if there’s any other bug-related news you’d like us to cover.
你想让我们报道的任何虫虫相关的新闻
Don’t forget to subscribe, and as always—
别忘了订阅 还有一如既往的
thanks for watching.
感谢观看

发表评论

译制信息
视频概述

RoboFly不是使用电线或电池,而是由激光驱动。该激光照射在安装在机器人顶部的光伏电池上。该单元本身将激光转换为仅7伏的电力,因此内置电路可将其提升至需要拍动“翅膀”所需的240伏。该电路还包含一个微控制器,它告诉机器人何时以及如何拍打它的“翅膀” - 在RoboBee上,这是通过系绳连接的外部控制器处理的。

听录译者

收集自网络

翻译译者

伽卡

审核员

审核员 V

视频来源

https://www.youtube.com/watch?v=XZKAGEV7bw0

相关推荐