ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

如何利用大自然的隐藏超能量 – 译学馆
未登陆,请登陆后再发表信息
最新评论 (0)
播放视频

如何利用大自然的隐藏超能量

How we're harnessing nature's hidden superpowers | Oded Shoseyov

现代科技已发展了200年
Two hundred years of modern science.
不得不承认的是
We have to admit
我们的表现不尽人意
that our performance is not great.
我们制造的机器不断出现故障
The machines we build continue to suffer from mechanical failures.
我们修建的房屋经受不住地震
The houses we build do not survive severe earthquakes.
但我们不应苛责科学家们 原因很简单
But we shouldn’t be so critical of our scientists for a simple reason:
他们并没有太多时间
they didn’t have much time.
200年太短
Two hundred years is not a lot of time,
毕竟大自然已用了30亿年的时间
while nature had three billion years
来完善那些我们一直期望着
to perfect some of the most amazing materials,
能够拥有的神奇材料
that we wish we had in our possession.
记住了 这些材料有着
Remember, these materials carry a quality assurance
30亿年的品质保证
of three billion years.
举个例子 红杉树
Take, for example, sequoia trees.
几百年来 无论严寒酷暑
They carry hundreds of tons for hundreds of years
它们都不断吸收着
in cold weather, in warm climates,
大量紫外线
UV light.
然而 如果用高倍电子显微镜观察其内部结构
Yet, if you look at the structure by high-resolution electron microscopy,
去看看 它到底是由什么构成的
and you ask yourself, what is it made of,
让人惊讶的是 只是糖而已
surprisingly, it’s made of sugar.
当然 并不是我们喝茶时放的那种糖
Well, not exactly as we drink in our tea.
这实际上是一种叫做纳米晶体纤维素的材料
It’s actually a nanofiber called nanocrystalline cellulose.
这种纳米晶体纤维素相当坚硬
And this nanocrystalline cellulose is so strong, on a weight basis,
在相同质量下 相当于十倍铁的硬度
it’s about 10 times stronger than steel.
然而它由糖组成
Yet it’s made of sugar.
因此全世界的科学家都相信这种纳米纤维素
So scientists all over the world believe that nanocellulose
将会成为最重要的工业原材料之一
is going to be one of the most important materials for the entire industry.
那么问题来了
But here’s the problem:
假如说你想买半吨的纳米纤维素
say you want to buy a half a ton of nanocellulose
来建造船只或是飞机
to build a boat or an airplane.
你可以上谷歌 上易趣 甚至可以问问马云爸爸
Well, you can Google, you can eBay, you can even Alibaba.
但还是买不到
You won’t find it.
你只会找到一堆科学论文
Of course, you’re going to find thousands of scientific papers —
论文里说 这是一种神奇的材料
great papers, where scientists are going to say this is a great material,
我们可以用它来做很多东西
there are lots of things we can do with it.
但就是尚未实现商用
But no commercial source.
因此我们在希伯来大学 与瑞典伙伴一起
So we at the Hebrew University, together with our partners in Sweden,
致力于将这种纳米纤维素投入到
decided to focus on the development of an industrial-scale process
工业化量产阶段
to produce this nanocellulose.
当然我们并不想砍树
And, of course, we didn’t want to cut trees.
所以我们在寻找
So we were looking for another source
替代性的原材料
of raw material,
我们找到了一种 事实上就是纸浆废渣
and we found one — in fact, the sludge of the paper industry.
为什么选它呢 因为量大
The reason: there is a lot of it.
光是欧洲 每年就能产生
Europe alone produces 11 million tons
1100万吨纸浆废渣
of that material annually.
相当于在一片足球场上
It’s the equivalent of a mountain three kilometers high,
堆起一座3000米的山
sitting on a soccer field.
每年都能产生这样一山的纸浆废渣
And we produce this mountain every year.
对一般人来说 这是一个环境问题
So for everybody, it’s an environmental problem,
但对于我们来说 这就是一座金矿
and for us, it’s a gold mine.
事实上我们正在以色列进行纳米晶体纤维素的量产
So now, we are actually producing, on an industrial scale in Israel,
很快 瑞典也能实现量产
nanocellulose, and very soon, in Sweden.
利用这种材料我们可以做很多东西
We can do a lot of things with the material.
举个例子
For example,
经证实 只需将少量纳米纤维素
we have shown that by adding only a small percent of nanocellulose
加入我这件衣服这样的普通棉纤维中
into cotton fibers, the same as my shirt is made of,
衣料的强度就能显著提升
it increases its strength dramatically.
这就可以用于制造一些神奇的东西
So this can be used for making amazing things,
比如工业及医疗用的超级纤维
like super-fabrics for industrial and medical applications.
不仅如此
But this is not the only thing.
再比如 独立自承重结构
For example, self-standing, self-supporting structures,
如图所示的这种结构
like the shelters that you can see now,
目前正在威尼斯双年展上展出
actually are now showcasing in the Venice Biennale for Architecture.
自然不仅在植物王国里
Nature actually didn’t stop its wonders
创造奇迹
in the plant kingdom.
还有昆虫世界
Think about insects.
比方说 猫蚤
Cat fleas, for example,
跳跃高度能达到自身身高的100倍
have the ability to jump about a hundred times their height.
厉害吧
That’s amazing.
如果是人的话
It’s the equivalent of a person
就相当于站在纽约自由岛上
standing in the middle of Liberty Island in New York,
蹦一下
and in a single jump,
就能跳上自由女神像的顶端
going to the top of the Statue of Liberty.
我想大家都想拥有这样的能力吧
I’m sure everybody would like to do that.
然而问题是
So the question is:
猫蚤是怎么做到的
How do cat fleas do it?
实验证明 它们靠的是一种神奇物质
It turns out, they make this wonderful material,
节肢弹性蛋白
which is called resilin.
简单地说 就是一种蛋白质
In simple words, resilin, which is a protein,
是世界上最有弹性的物质
is the most elastic rubber on Earth.
可以拉伸
You can stretch it,
可以收缩
you can squish it,
过程中几乎不损失能量
and it doesn’t lose almost any energy to the environment.
你一松开手 啪
When you release it — snap!
能量全都回来了
It brings back all the energy.
所以我相信每个人都希望拥有这种物质
So I’m sure everybody would like to have that material.
然而有个问题
But here’s the problem:
猫蚤太难抓了
to catch cat fleas is difficult.
为什么呢 因为它们总是蹦来蹦去啊
Why? Because they are jumpy.
但其实 只需抓住一只就够了
But now, it’s actually enough to catch one.
我们提取它的DNA
Now we can extract its DNA
研究清楚它是如何产生节肢弹性蛋白的
and read how cat fleas make the resilin,
再将其复制到不那么有弹性的有机体中 比如植物
and clone it into a less-jumpy organism like a plant.
我们就是这么做到
So that’s exactly what we did.
现在我们能成功地制造大量节肢弹性蛋白
Now we have the ability to produce lots of resilin.
我们团队决定做点更酷的事
Well, my team decided to do something really cool at the university.
我们决定要把
They decided to combine
植物界硬度最强的物质 纳米纤维素
the strongest material produced by the plant kingdom
和动物界弹性最高的物质 节肢弹性蛋白
with the most elastic material produced by the insect kingdom —
结合在一起
nanocellulose with resilin.
结果惊人
And the result is amazing.
这种合成物 坚韧 富有弹性 还是透明的
This material, in fact, is tough, elastic and transparent.
有着极高的利用价值
So there are lots of things that can be done with this material.
比如 制作新型运动鞋
For example, next-generation sport shoes,
可以让我们跳得更高 跑得更快
so we can jump higher, run faster.
甚至可以制作电脑和智能手机的触屏
And even touch screens for computers and smartphones,
这样就不怕摔碎了
that won’t break.
新的问题是 我们一直在尝试
Well, the problem is, we continue to implant
通过粘连 栓接等方式
synthetic implants in our body,
将人工合成物植入人体内
which we glue and screw into our body.
而我要说 这不是个好主意
And I’m going to say that this is not a good idea.
因为失败了
Why? Because they fail.
这些合成材料无法正常工作
This synthetic material fails,
就像这个塑料叉子
just like this plastic fork,
用的时候不够结实就断了
that is not strong enough for its performance.
有时候呢 人工材料强度又过高
But sometimes they are too strong,
与周围结构组织的
and therefore their mechanical properties do not really fit
机械性能不符合
their surrounding tissues.
实际上 原因很简单
But in fact, the reason is much more fundamental.
因为
The reason is that in nature,
根本就没有螺丝
there is no one there
把我的头拧在脖子上
that actually takes my head and screws it onto my neck,
也没有胶水把皮肤粘在我身上
or takes my skin and glues it onto my body.
自然界中 万物都是自我合成的
In nature, everything is self-assembled.
每一个鲜活的细胞
So every living cell,
无论是植物的 昆虫的 还是人类细胞
whether coming from a plant, insect or human being,
都有纳米生物的基石 DNA编码
has a DNA that encodes for nanobio building blocks.
多数时候 都是蛋白质
Many times they are proteins.
有时候 是合成其他物质所需的酶
Other times, they are enzymes that make other materials,
比如多糖 脂肪酸
like polysaccharides, fatty acids.
而这些物质所共有的特性就是
And the common feature about all these materials
不需要外界帮助
is that they need no one.
它们能相互辨识 自我合成
They recognize each other and self-assemble
行程特定结构 以便细胞大量增殖
into structures — scaffolds on which cells are proliferating
形成组织
to give tissues.
然后再长成器官 最后新生命诞生
They develop into organs, and together bring life.
大约10年前 我们在希伯来大学 就决定专注研究
So we at the Hebrew University, about 10 years ago, decided to focus
也许是对人类而言最重要的生物材料
on probably the most important biomaterial for humans,
胶原蛋白
which is collagen.
为什么呢
Why collagen?
因为胶原蛋白占了我们身体干重的25%
Because collagen accounts for about 25 percent of our dry weight.
我们体内除了水 第二多的就是胶原蛋白了
We have nothing more than collagen, other than water, in our body.
我一直都说
So I always like to say,
任何人一旦需要修复身体
anyone who is in the replacement parts of human beings
就会首选胶原蛋白
would like to have collagen.
诚然 在我们开始项目之前
Admittedly, before we started our project,
已经有超过1000种医用植入物
there were already more than 1,000 medical implants
是用胶原蛋白合成的
made of collagen.
从很简单的东西 比如真皮填充物 用来淡化皱纹
You know, simple things like dermal fillers to reduce wrinkles,
增厚嘴唇
augment lips,
到更加复杂的医用植入物 比如心脏瓣膜
and other, more sophisticated medical implants, like heart valves.
那么 问题在哪里
So where is the problem?
麻烦在来源上
Well, the problem is the source.
这些胶原蛋白
The source of all that collagen
其实来自死尸
is actually coming from dead bodies:
死猪 死牛
dead pigs, dead cows
甚至是死人
and even human cadavers.
所以安全性是个很大的问题
So safety is a big issue.
不仅如此
But it’s not the only one.
质量也是个问题
Also, the quality.
我讲一个亲身经历的事
Now here, I have a personal interest.
这是我的父亲 兹维 我们在以色列的酒厂
This is my father, Zvi, in our winery in Israel.
七年前 我父亲做了心脏瓣膜替换的手术
A heart valve, very similar to the one that I showed you before,
跟我之前给你们看的很像
seven years ago, was implanted in his body.
科学文献很明确地说 10年后
Now, the scientific literature says that these heart valves start to fail
心脏瓣膜就会衰竭
10 years after the operation.
这不足为奇
No wonder:
因为那些都是非常老的二手瓣膜
they are made from old, used tissues,
就像这坯破墙 正一点点倒塌
just like this wall made of bricks that is falling apart.
当然 我添砖加瓦再砌一面新墙
Yeah, of course, I can take those bricks and build a new wall.
但那就不可能跟原来的一样了
But it’s not going to be the same.
美国食品和药物管理局
So the US Food and Drug Administration
在2007年发了一则通告
made a notice already in 2007,
要求各公司寻找更优的替代品
asking the companies to start to look for better alternatives.
我们也正是这样做的
So that’s exactly what we did.
我们将形成人类一型胶原蛋白
We decided to clone all the five human genes responsible
所需的5种基因
for making type I collagen in humans
复制到转基因烟草上
into a transgenic tobacco plant.
这样一来 烟草就能产生全新的 完整的
So now, the plant has the ability to make human collagen brand new,
人类胶原蛋白
untouched.
这很厉害
This is amazing.
而我们实际上也一直在这么做
Actually, it’s happening now.
如今 以色列在温室中栽培这种烟草
Today in Israel, we grow it in 25,000 square meters of greenhouses
种植面积达25000平米
all over the country.
农户拿到烟草幼苗
The farmers receive small plantlets of tobacco.
看起来和普通幼苗一样
It looks exactly like regular tobacco,
但其实带有五种人类基因
except that they have five human genes.
能合成一型胶原蛋白
They’re responsible for making type I collagen.
我们将幼苗培育50至70天后
We grow them for about 50 to 70 days,
采集它们的叶子
we harvest the leaves,
然后用冷藏车将它们运送到工厂
and then the leaves are transported by cooling trucks to the factory.
在工厂里开始提取胶原蛋白
There, the process of extracting the collagen starts.
如果你做过青酱 是一样的过程
Now, if you ever made a pesto — essentially, the same thing.
把叶子捣碎 能得到含有胶原蛋白的汁液
You crush the leaves, you get the juice that contains the collagen.
浓缩提取蛋白质
We concentrate the protein,
将蛋白质转移到无菌房内做最后的提纯
transfer the protein to clean rooms for the final purification,
最终得到的胶原蛋白与我们体内产生的完全相同
and the end result is a collagen identical to what we have in our body —
一手的 全新的
untouched, brand new
由此我们可以制作各种医用植入物
and from which we make different medical implants:
比如 骨空隙填料
bone void fillers, for example,
用来治愈多段骨折 进行脊柱融合术
for severe bone fractures, spinal fusion.
最近 发展更甚
And more recently, even,
我们已经能在欧洲市场售卖
we’ve been able to launch into the market here in Europe
一种用来治疗糖尿病足溃疡的凝胶
a flowable gel that is used for diabetic foot ulcers,
现在已经允许在诊所使用了
that is now approved for use in the clinic.
这不是科幻小说
This is not science fiction.
这的的确确发生在我们身边
This is happening now.
我们用植物来制作医用植入物
We are using plants to make medical implants
来修复人体
for replacement parts for human beings.
最近 我们已经能成功制作胶原蛋白纤维了
In fact, more recently, we’ve been able to make collagen fibers
它的强度是跟腱的6倍
which are six times stronger than the Achilles tendon.
太不可思议了
That’s amazing.
我们正与来自爱尔兰的同事一起
Together with our partners from Ireland,
计划着下一步
we thought about the next thing:
将节肢弹性蛋白加进这些纤维中
adding resilin to those fibers.
如果成功
By doing that,
我们将得到一种超级纤维
we’ve been able to make a superfiber
强度提高3.8倍
which is about 380 percent tougher,
弹性增强3倍
and 300 percent more elastic.
未来就会出现这么个怪事儿
So oddly enough, in the future,
病人在做完了跟腱或韧带移植手术后
when a patient is transplanted with artificial tendons or ligaments
只要用的是这种超级纤维
made from these fibers,
那他术后会比术前
we’ll have better performance after the surgery
更强健
than we had before the injury.
那么未来会如何呢
So what’s for the future?
我相信我们能成功制造
In the future, we believe we’ll be able to make
更多由自然界提供给我们的纳米生物基石
many nanobio building blocks that nature provided for us —
胶原蛋白 纳米纤维素 节肢弹性蛋白等等
collagen, nanocellulose, resilin and many more.
来完善各种机械
And that will enable us to make better machines perform better,
甚至是心脏
even the heart.
人造的心脏将不会再
Now, this heart is not going to be the same
与捐献的心脏一样脆弱
as we can get from a donor.
它会变得更强壮
It will be better.
更有活力
It actually will perform better
使用时间更长
and will last longer.
我的朋友锡安·苏利曼曾经说过
My friend Zion Suliman once told me
一句非常智慧的话
a smart sentence.
他说 你如果想创新
He said, “If you want a new idea,
就应该翻开旧书看看
you should open an old book.”
我要说这本书早已写就
And I’m going to say that the book was written.
记载着30亿年的
It was written over three billion years
进化史
of evolution.
文本内容就是生命的DNA
And the text is the DNA of life.
我们只需
All we have to do
认认真真细读一遍
is read this text,
深入理解这自然的赠与
embrace nature’s gift to us
并在此基础上开创新篇章
and start our progress from here.
谢谢
Thank you.

发表评论

译制信息
视频概述
听录译者

收集自网络

翻译译者

启点-洞洞

审核员

自动通过审核

视频来源

https://www.youtube.com/watch?v=lAzQWtkPzbI

相关推荐