ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

我们有可能在太空旅行中长期的存活吗 – 译学馆
未登录,请登录后再发表信息
最新评论 (0)
播放视频

我们有可能在太空旅行中长期的存活吗

Could we survive prolonged space travel? - Lisa Nip

长时间的太空旅行将对人类的身体造成严重的影响
Prolonged space travel takes a severe toll on the human body.
微重力环境会损害肌肉和骨头的生长
Microgravity impairs muscle and bone growth,
并且高剂量的辐射会造成不可逆变的突变
and high doses of radiation cause irreversible mutations.
当我们认真地认为人类成为了太空强者
As we seriously consider the human species becoming space-faring,
一个大问题出现了
a big question stands.
即使我们摆脱了地球轨道
Even if we break free from Earth’s orbit
并且开始在恒星之间的长时间的旅行
and embark on long-duration journeys among the stars,
我们能够适应太空的极端环境吗
can we adapt to the extreme environments of space?
这将不是人类第一次适应艰苦的环境
This won’t be the first time that humans have adapted to harsh environments
并且进化出超人能力
and evolved superhuman capabilities.
并没有幻想中的激光视力和隐身
Not fantastical powers like laser vision or invisibility,
而是身体为了在艰难环境下存活的适应
but physiological adaptations for survival in tough conditions.
比如说 在喜马拉雅山脉上
For example, on the Himalayan mountains
那里最高的海拔比海平面高出九千米
where the highest elevation is nine kilometers above sea level,
一个无法适应的低海拔生活的人类将体验缺氧症状
an unacclimated lowland human will experience symptoms of hypoxia,
众所周知的高原反应
commonly known as mountain sickness.
在这个海拔 人类的身体通常会产生额外的红细胞
At these altitudes, the body usually produces extra red blood cells,
血液变稠然后会影响血流速度
thickening the blood and impeding its flow.
但是生活在这些山脉上的喜马拉雅人因为几千年的
But Himalayans who have lived on these mountains for thousands of years
长期的进化机制对付这个现象
permanently evolved mechanisms to circumvent this process
以及保持正常的血流速度
and maintain normal blood flow.
这样的事情证明了人类可以建立永久的拯救生命的特质
Cases like that prove that humans can develop permanent lifesaving traits.
但是整个人类的天生的适应能力
But natural adaptation for entire human populations
需要花费千百万年
could take tens of thousands of years.
如今的科技进步或许会加快人类适应的速度
Recent scientific advances may help us accelerate human adaptation
到单独的几代人
to single generations.
作为一种在太空旅行中努力生存的物种
To thrive as a species during space travel,
我们有潜力想出各种办法
we could potentially develop methods
以便很快地发展出自我保护的能力
to quickly program protective abilities into ourselves.
这些方法中的一个版本是基因治疗
A beta version of these methods is gene therapy,
这种方法我们现在就可以用来治疗基因疾病
which we can currently use to correct genetic diseases.
基因编辑科技 现在正在飞速发展
Gene editing technology, which is improving rapidly,
这种技术允许科学家们直接改变人类的基因组
allows scientists to directly change the human genome
从而中断不良的改变过程或者制造有帮助的物质
to stop undesirable processes or make helpful substances.
举一个不必要的过程的例子
An example of an unwanted process
当我们的身体暴露在电离射线下时
is what happens when our bodies are exposed to ionizing radiation.
没有一个像地球一样的大气的保护屏障和磁场
Without an atmospheric barrier and a magnetic field like Earth’s,
大多数星球和月球被这些危险的亚原子粒子轰炸
most planets and moons are bombarded with these dangerous subatomic particles.
它们几乎可以穿透任何东西
They can pass through nearly anything
并且将造成潜在的太空探索者DNA癌变的风险
and would cause potentially cancerous DNA damage to space explorers.
但是我们如何发动对辐射的反攻
But what if we could turn the tables on radiation?
人类的皮肤制造一种叫做黑色素的色素
Human skin produces a pigment called melanin
用来保护我们免受地球上的过滤辐射
that protects us from the filtered radiation on Earth.
黑色素在物种中以不同的形式存在
Melanin exists in many forms across species,
并且一些能够产生黑色素的真菌
and some melanin-expressing fungi
能够用这种色素把辐射转化成化学能量
use the pigment to convert radiation into chemical energy.
而不只是努力保护人体
Instead of trying to shield the human body,
或者迅速修复损伤
or rapidly repair damage,
我们有潜力改造人类
we could potentially engineer humans
去适应并且表达这些真菌 以黑色素为基础的能量获取系统
to adopt and express these fungal, melanin-based energy-harvesting systems.
它们会把辐射转化成有用的能量同时保护我们的DNA
They’d then convert radiation into useful energy while protecting our DNA.
这听起来像极了科幻小说
This sounds pretty sci-fi,
但是或许在如今的科技发展下真的是可以实现的
but may actually be achievable with current technology.
但是科技并不是唯一的障碍
But technology isn’t the only obstacle.
这里存在持续的辩论对于
There are ongoing debates on the consequences
这种我们基因的彻底的改变产生的伦理上的影响
and ethics of such radical alterations to our genetic fabric.
除了辐射之外
Besides radiation,
重力环境的变化强度对于太空旅行者来说是另一个挑战
variation in gravitational strength is another challenge for space travelers.
除非我们在太空船上制造认为的重力环境或者在另一个星球上
Until we develop artificial gravity in a space ship or on another planet,
我们应该假设宇航员将花费一些时间生活在微重力环境中
we should assume that astronauts will spend time living in microgravity.
在地球上 人类肌肉和骨骼保护细胞
On Earth, human bone and muscle custodial cells
对重力的连续的牵引的压力做出反应
respond to the stress of gravity’s incessant tugging
通过更新老细胞在著名的细胞重建和再生的过程中
by renewing old cells in processes known as remodeling and regeneration.
但是在一个像火星一样的微重力环境中
But in a microgravity environment like Mars,
人类骨骼和肌肉细胞不会明白这些暗示
human bone and muscle cells won’t get these cues,
结果造成骨质疏松和肌肉萎缩
resulting in osteoporosis and muscle atrophy.
所以 我们怎样给细胞提供一个人为的信号
So, how could we provide an artificial signal for cells
来防止骨骼和肌肉的损失
to counteract bone and muscle loss?
强调一下 这是推理性的
Again, this is speculative,
但是从生化角度改造我们体内的微生物
but biochemically engineered microbes inside our bodies
可以让骨骼和肌肉重塑信号因子
could churn out bone and muscle remodeling signaling factors.
或者人类可以进行基因工程
Or humans could be genetically engineered
来制造更多的这些信号在重力缺失的环境下
to produce more of these signals in the absence of gravity.
辐射暴露和微重力仅仅是两个挑战在许多
Radiation exposure and microgravity are only two of the many challenges
我们即将遭遇的挑战中在恶劣的太空条件下
we will encounter in the hostile conditions of space.
但是如果伦理道德上我们准备使用它们
But if we’re ethically prepared to use them,
基因编辑和微生物改造是两个灵活的工具
gene editing and microbial engineering are two flexible tools
可以让我们适应很多条件
that could be adapted to many scenarios.
在不远的未来 我们或许会进一步发展
In the near future, we may decide to further develop
优化这些基因工具去适应太空生活的艰难现实
and tune these genetic tools for the harsh realities of space living.

发表评论

译制信息
视频概述
听录译者

收集自网络

翻译译者

【请假】杨小阳

审核员

自动通过审核

视频来源

https://www.youtube.com/watch?v=upp9-w6GPhU

相关推荐