未登录,请登录后再发表信息
最新评论 (0)
播放视频

9种未来的材料

9 Futuristic Materials

《星际迷航4:抢救未来》中——
In Star Trek IV: The Voyage Home —
你看过吗?1986年上映的
Have you ever seen it?Came out in 1986.
企业号太空船的成员及时回到过去?
The crew of the original Enterprise go back in time?
回到……1986年 管他呢
To … 1986? Anyway,
电影里面有个场景 总工程师斯考迪描述了一个
there’s a scene where chief engineer Scotty describes
更轻 更结实的 具有未来色彩的树脂玻璃的替代品:透明铝
a lighter, sturdier, futuristic alternative to plexiglass: transparent aluminum.
这种物质被认为足够坚硬
This stuff is supposed to be so strong
可以被用来制作企业号太空船的观察孔
that it makes up the viewports of the Enterprise.
最酷的地方是 这种物质不只出现在科幻电影中
The coolest part though, is that this stuff is not just science fiction!
透明铝实际上是存在的
Transparent aluminum actually exists,
它(的性能)绝对没有辜负斯考迪的大肆宣传
and it pretty much lives up to Scotty ’ s hype.
它仅是那些看上去像从科幻小说中拽出来的
And it ’ s just one of many cool new materials
很多酷酷的新材料之一
that seem like they were plucked straight out of science fiction.
从隐形斗篷到自我修复混凝土 未来已经到来
From invisibility cloaks to self-repairing concrete, the future is now.
[音乐]
[Music Playing]
气凝胶是世界上最轻的固体材料之一
Aerogels are one of the lightest solid materials in the world.
大多数凝胶是液体
Gels are mostly liquid,
但它们表现得像固体 因为它们中间有群分子
but they act like solids because there ’ s a bunch of molecules
将液体联合并保持在一起
in them that link together and hold the liquid in place.
气凝胶是一种内部液体全被气体取代的凝胶
Aerogels are gels where all the liquid has been replaced with gas.
想象你在吃最喜欢的明胶甜点 一口吸掉所有水分
Imagine taking your favorite gelatin dessert and sucking out all the water.
但它没有碎成一团 而是保持圆顶状的样子
But instead of crumbling into a powder, it still keeps its dome-like shape.
这基本上就是科学家制造气凝胶的原理:
That’s basically how scientists create aerogels:
首先 科学家从诸如硅或碳化合物中制造明胶
First, they make a gel out of something like silicon or carbon compounds.
然后 他们用极高的温度和压力
Then, they use extremely high temperatures and pressures
来模糊液体和气体阶段的界线
to blur the line between the liquid and gas phases,
制造超临界流体
creating a supercritical fluid.
然后 这种似液体又似气体的物质
Then the kinda-liquid-kinda-gas can drift out
可以从坚固的分子结构中漂移出来
of the solid molecular structure, and
被空气所取代 这样你便得到有气孔的
be replaced by air, so you have a porous,
还保持原始形状的极轻材料
lightweight material that retains its shape.
气凝胶是绝佳的绝缘体
Aerogels are great for insulation,
因为其内部气体不太能导热
because the air inside doesn ’ t transfer heat very well.
所以大多被应用在太空服和宇宙飞船的内层
So they’re mostly being used in spacesuit and spacecraft linings.
再加上它们几乎透明
Plus they ’ re almost transparent,
这也就意味着 我们可在地球上使用气凝胶
which means we could use aerogels to insulate windows
做窗户隔离……还是等它们便宜些吧
here on Earth… when they get cheaper.
如果你是一名哈利•波特的粉丝
If you ’ re a Harry Potter fan,
很大可能你会想拥有自己的隐形斗篷
chances are you ’ ve wanted your own invisibility cloak.
但并非是魔法让东西隐形
But instead of using magic to make things invisible,
研究人员需要用光来做实验
muggle researchers need to experiment with light.
我们目前还没有大范围的隐形斗篷技术
We don ’ t have large-scale invisibility cloak technology yet,
但科学家们在努力 试验各种点子
but scientists are working on a lot of different ideas,
例如制造可延展的液体金属片
like creating flexible sheets of liquid metal that can block
阻止雷达的无线电波
radio waves used in radar.
我们在向着目标前进
And we’re getting closer.
2015年 科学家制造了一种非常薄的金属
In 2015, scientists designed a very, very thin material,
仅为80纳米
like 80 nanometers thin, that
可以隐藏相同大小的物体
could hide equally tiny objects.
为了让我们看见一个物体
In order for us to see an object,
光必须要反射回来
light has to bounce off of it.
任何光线扭曲 都会显现其形状特征
And any distortions of that light reveal its shape and features.
这种隐形斗篷使用极小砖形的黄金天线
This invisibility cloak uses teeny-tiny brick-shaped gold antennas
来抵消自然光线扭曲
to counteract that natural light distortion.
当这件斗篷裹在一个物体上
So when this cloak is wrapped around an object,
所有光线都被弹开
any light bouncing off of it looks like it ’ s
就像一个完全平坦的镜子
coming from a perfectly flat mirror,
看不出斗篷和物体的存在
hiding the fact that the cloak and object are even there.
理论上 你可以调整黄金天线
And theoretically, you could adjust the gold antennas
让反射光看起来像任何物体或背景
to make the reflected light look like any object or background.
这种技术目前只存在于微观水平
This technology only exists at a microscopic level right now,
所以 科学家们在制作更大隐形物体前
so scientists need to figure out
还需要找出放大这个想法的方法
how to scale up the idea before we can make larger objects,
例如 隐形人
like people, invisible.
我们还不能完全让物体隐形
So we can ’ t quite make objects invisible,
超级防水材料 或超疏水材料听上去如何
but what about super waterproof, or superhydrophobic, materials?
比你日常的雨衣防水多了
I’m talking way more waterproof than your average raincoat.
科学家们在试图模仿
Scientists are trying to find ways to mimic
自然中的防水表面
the waterproof surfaces found in nature, like
例如荷叶或某种蝴蝶翅膀
the lotus leaf or certain butterfly wings.
结果显示
And it turns out
显微镜下 粗糙表面有更好的疏水性
that microscopically rough surfaces tend to be more hydrophobic,
因为它们可捕捉气囊
because they can trap pockets of air
最小化水滴和物质表面的
and minimize the interaction between water droplets and
相互作用
the surface of the material.
科学家们可制造物质表层
So scientists can make coatings that have things
例如包含氧化铝纳米粒子的材料
like aluminum oxide nanoparticles in them,
让物体表层粗糙且防水
to make surfaces rougher and repel water.
另一种想法是使物体表面
Another idea is to make surfaces that are covered
覆盖极小的脊 或聚合物锥
in itty bitty ridges or polymer cones,
尺寸仅有几十纳米
that are just tens of nanometers in size,
比一根人类头发的千分之一还小
thousands of times smaller than the width of a human hair.
这些材料很防水
These materials are so waterproof
以至于水滴实际是从表面弹开
that water droplets actually appear to bounce off of them,
甚至分裂为小颗粒
and even split into smaller pieces!
将这些材料应用于电子器材或医疗器械
By putting this stuff on electronics and medical devices,
就能保护设施 不因水而损坏
we can protect them from water damage,
这些材料可能有一天被用于
but these materials may also be someday used to
阻止车上结冰 或防止船上水藻的形成
keep ice from forming on cars, or algae growing on ships.
碳很奇妙
Carbon is… amazing.
它是我们所知的组成所有生命的基础 很奇妙
Like, the-basis-of-all-life-as-we-know-it amazing.
我们以前讨论过以碳为基础的物质多么棒
We ’ ve talked before about how awesome some carbon-based materials are,
例如石墨烯 但我们可以利用所掌握的有关碳的知识
like graphene. But we can use what we know about carbon
来制造比金刚石更坚硬的物质
to make a material even harder than diamonds.
聚合金刚石纳米棒 或超级金刚石
Aggregated diamond nanorods, or hyperdiamonds,
更酷的是 这些是我们所知的最坚硬
if you wan na sound cool, these are the hardest,
密度最高 几乎无法压缩的材料
most dense, and least compressible material we know of.
金刚石坚硬是因其分子结构
Diamonds are hard because of their molecular structure,
每个碳原子与相邻的原子形成四个共价键
each carbon atom forms four covalent bonds with the atoms around it,
从而形成极其坚硬的晶体结构
which forms an exceptionally hard crystal structure.
在超级金刚石结构中 同样适用
In hyperdiamonds, that ’ s still true,
不同点是 较普通金刚石更耐磨损
but it ’ s a different, more wear-resistant form of diamond.
这种材料不是由单一结构构成
This material is made up of many tiny,
而是由许多极小的连结在一起的金刚石晶体组成
interlocked diamond crystals rather than one single structure.
可在实验室中对石墨进行高温高压得到
They can be made in the lab by applying extreme heat and pressure to graphite.
金刚石被广泛应用于工业作业中
Diamonds are frequently used for industrial jobs
例如 研磨和抛光
like grinding and polishing,
因为金刚石非常坚硬
because they’re so tough.
超级金刚石比普通金刚石更有用
But hyperdiamonds could be even more useful than regular diamonds,
因为更不易受温度和压力的影响
because they ’ re even more resistant to the temperature and pressure changes
而普通金刚石则会因温度和压力而磨损
that can wear diamonds down over time.
何时金属即是玻璃呢
Now, when can metal also be glass?
当工程师发明玻璃合金的时候
Well, when engineers invent … metallic glass,
也称为非晶金属
also known as amorphous metal.
大多金属拥有一个晶体结构
Most metals have a crystalline structure,
原子排列于特定的重复的模式 使之坚硬
the atoms are ordered into a specific, repeated pattern that makes it stiff.
但玻璃中的原子排列是随机的 令其易碎
But glass has a random arrangement of atoms, which makes it more brittle.
所以 当金属原子随机排列时 合金玻璃就产生了
So, metallic glasses form when metal atoms are in this random arrangement,
就像熔化的金属冷却地非常快
like when melted metal is cooled really, really quickly,
粒子来不及排列成晶体
before its particles can arrange themselves into a crystal.
这种材料有两个好处
This material has the best of both worlds,
熔化玻璃的延展性
the malleability of molten glass combined
混合晶体金属的强度
with even more strength than crystalline metal.
高强度与低硬度的结合
This combination of high strength and
使其很有韧性
low stiffness makes it really resilient,
它比其他形式的金属能更好地储存并释放弹性能量
it can store and release elastic energy better than other forms of metal,
就是说不容易变形
which means it doesn ’ t deform as easily.
现在 金属玻璃被用于
Right now metallic glasses are being used
让物体耐腐蚀或耐磨的涂层
as coatings to make objects more corrosion or wear-resistant,
或制造例如高尔夫球杆头类的产品
or to make products like golf club heads.
最终 这种材料将被用于
But eventually the material could be
容易工业化生产的 强调强度和重量的物品
used to easily manufacture things where strength and weight are concerns,
例如 更轻更坚固的汽车零件
like lighter, stronger car parts.
玻璃可不是唯一炙手可热的新型金属材料
But glass isn’t the only hot new metal material.
金属泡沫由金属制成
Metallic foams are made up of a metal,
例如 铝以及一整堆充气孔
like aluminum, and a whole bunch of gas-filled pores.
这使这类材料超级轻
This makes them super light,
并且 保留了很多金属的原始属性
plus they keep many of the original properties of their metal,
例如 坚硬 防火 导电
like being strong, fire resistant, and conducting electricity.
金属泡沫还可通过其他途径得到
Metallic foams can be made a few different ways,
例如 将气体注入到液态金属中
like by injecting gas into a liquid metal,
或令已在复合金属混合物中的
or by causing the precipitation of gas
已溶解气体沉淀
that ’ s already dissolved in a metal mixture.
有些拥有开气孔
And some are open-pored,
就是说内部的气孔互相连接
meaning that the gas pores inside are all interconnected, creating
制造有时被成为海绵金属的物质
what are sometimes called metal sponges.
在闭孔金属泡沫中
But in closed-pored metal foams,
小气泡都是分开的 可以漂浮在水面
the little bubbles are all separated, which means they can float in water,
对建造更坚固更轻的船大有帮助
which could be helpful for building sturdier, lighter boats and spacecraft
制造的太空船可以在水上降落
that can make water landings.
总之 金属泡沫对高科技震动和压力吸收帮助很大
In general, metal foams are useful for high-tech shock and impact absorbers,
内部气体让此物质极度压缩
the gas inside makes them extremely compressible,
可吸收很多机械能
so they can absorb a lot of mechanical energy,
而且依然保留金属的强度和耐用性
while still retaining some of the strength and durability of a metal.
这就是说 它们还拥有
This means they also have a lot
许多潜力 例如建造各种汽车部件
of potential for building different car components that
更加轻便耐用
are light and sturdy.
有些金属 例如铝 有独一无二的新用途
Some metals also have unique new uses, like aluminum.
在《星际迷航4》中被称为透明铝
In Star Trek IV, it ’ s called transparent aluminum,
并不准确
but that ’ s kind of inaccurate.
我们的科学家正在制造的材料
The material our scientists are manufacturing
实际上是氮氧化铝
is really aluminum oxynitride and it ’ s composed
由铝 氧气和氮气组成
of aluminum, oxygen, and nitrogen.
像一种制陶技术
It ’ s a ceramic,
这种材料从粉末开始 加热直至熔化
which means the material starts as a powder, and is then heated up until it melts,
随后冷却至相似于玻璃的晶体结构
and then cooled into a crystalline structure similar to glass.
它基本上是透明的 且硬度很高
It ’ s basically transparent, and extremely strong,
几乎与蓝宝石一样坚硬
nearly as hard as sapphire,
所以氮氧化铝被用于
so aluminum oxynitride is really useful for things
防弹玻璃 超耐用相机镜头等
ranging from bulletproof windows to super-durable camera lenses.
制造它还很昂贵
It ’ s still expensive to make,
希望我们能在开始建造星际飞船之前
but hopefully we ’ ll find ways to make it more efficient
找到方法 节省成本
by the time we get around to building starships!
混凝土!我确定你对它很熟悉
Concrete! I’m sure you’refamiliar with it.
今天你就可能走在或坐在混凝土上
just today,you’ve probably walked on it, or sat on it —
事实上 混凝土现在就在你身边
in fact, it ’ s probably all around you right now!
但就如材料本身 它看上去不是很……舒服
But as materials go, it’s not very… cozy.
透光混凝土的发明希望能改变现状
The invention of light-transmitting concrete hopes to change that,
通过散布光纤在非常薄的混凝土薄层上
by interspersing very thin layers of concrete with optical fibers.
光线就可以从混凝土一面
This means light can be transmitted from one end
传播到另一面
of a concrete block to the other.
这种透明混凝土保留了它大部分的硬度
The translucent concrete maintains most of its strength,
依然可被使用于
so it can still be used for
重型项目 例如建造楼房或公路
heavy duty projects, like constructing buildings or roadways,
或者它还能被用于
or it can be used in otherwise
难见光区域 例如地铁隧道和通道
difficult-to-light areas, like subway tunnels and walkways.
不幸的是 我们还没有找到方法
Unfortunately, we haven ’ t found a way
像传统混凝土那样 将这种物质倾倒在现场
to pour this stuff out on-site like traditional concrete,
就是说还不能应用于实践
which means it ’ s not really practical yet,
它大多被用于艺术设施
mostly it ’ s used in art installations
或很小的区域
or very small areas.
但随着更多探索 有趣的发光人行道可能变得寻常
But with some more research, fancy glowing sidewalks may become the new normal.
如果我们可以延长
Now, what if we could increase the lifespan
已被倾倒的混凝土使用期限
of concrete that ’ s already been poured?
那就是 自我修复的混凝土
Enter: self-healing concrete.
由荷兰科学家发明
Invented by scientists in the Netherlands,
本义是将工程学与微生物学结合起来
the basic concept is to combine engineering with microbiology,
嵌入细菌 就可以在混凝土中直接制造石灰岩
and embed bacteria that can create limestone directly in the concrete.
在正常四季变革中 混凝土萎缩 膨胀 最终裂开
During normal seasonal changes, concrete shrinksand expands and eventually cracks.
水就可以渗透下去 导致更多损害
Then water can seep in, causing even more damage.
但是自我修复混凝土
But self-repairing concrete,
包含能进行生物降解的胶囊
contains biodegradable capsules that are full of bacteria and
充满细菌和食物来源 即乳酸钙
their food source, in this case, calcium lactate.
细菌处于休止状态 直至水涌入
The bacteria lie dormant until the water seeping
溶解胶囊 让细菌开始工作
in dissolves the capsules and sets them to work,
细菌进食 繁殖 产生方解石
eating and multiplying and producing calcite,
或依靠乳酸钙形成石灰岩
or limestone, from the calcium lactate,
充满于裂缝处
which fills in the cracks.
这些细菌可存活长达200年
These bacteria can survive up to 200 years
前提是混凝土中有足够的营养品
if there ’ s enough nutrition embedded in the concrete.
现今 这种细菌只能修复很小的裂缝
Currently, the bacteria can only heal very small cracks,
但最终这项技术可修复较大的断裂
but eventually this technology could fill larger breaks,
对于修复道路和建造更耐用的建筑意义重大
which could be huge for fixing roads and building more durable buildings,
省去亲力亲为的时间
without hands-on construction time!
所以 科学家们在开发
So, scientists are developing
各种带有惊人属性和奇怪用途的新型材料
all kinds of new materials with incredible properties and weird new uses.
很快 我们将不仅仅应用这些技术建造未来
Soon we ’ ll be building the future with all these technologies, and more.
有一天 斯考迪将被证明是对的
Someday, Scotty will have been proven right!
感谢观看这期科学秀
Thanks for watching this episode of SciShow,
由众筹网站赞助
brought to you by our patrons on Patreon.
如果你想帮助支持这个节目 请前往patreon.com/scishow
If you want to help support this show, just go to patreon.com/scishow.
别忘了去youtube.com/scishow订阅
And don’t forget to go to youtube.com/scishow and subscribe!
其他金属正变成对抗细菌的有用武器 正是银
Other metals are turning to be an useful weapon against bacteria is silver.
【音乐】
[music playing]

发表评论

译制信息
视频概述

隐形斗篷?透明铝?科幻电影中的科幻材料将真实存在于我们身边。

听录译者

收集自网络

翻译译者

侧耳倾听

审核员

审核员 V

视频来源

https://www.youtube.com/watch?v=az6oYcd-SfU

相关推荐