ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

8种灵感来自大自然的实用技术 – 译学馆
未登陆,请登陆后再发表信息
最新评论 (0)
播放视频

8种灵感来自大自然的实用技术

8 Useful Technologies Inspired by Nature

人类是令人惊异的发明家
Humans are incredibly good at inventing stuff.
事实上 在这短短50年中 我们人类发明的新技术
I mean, just in the last 50 years, we’ve come up with technology
让我们的生活发生了翻天覆地的变化 比如说 手机和互联网
that’s totally transformed our world, like cell phones and the internet.
与之相反的是 自然选择往往使用亿万年时间来解决问题
But natural selection has been solving problems for billions of years,
但自然选择总能找到极其高效的解决办法
and it’s led to some super efficient solutions.
因此 大批研究者将目光投向了大自然
So lots of researchers look to nature for solutions
以期找到那些不为人知的奇妙解法
that we might not have thought of on our own.
以下是8个我们从大自然借来的超酷的主意
Here are 8 of the coolest ideas we’ve borrowed.
蚊子的叮咬无疑令人害怕
Mosquito bites are, like, unquestionably awful.
但你们有没有注意到 你们很少真正感觉到蚊子咬?
But have you ever noticed you rarely feel the actual bite?
蚊子的唾液不但使人瘙痒 而且还传播疾病
It’s the mosquito’s saliva that makes you itch–and delivers diseases.
但要说到蚊子为人类做过什么贡献的话
But if there’s one good thing mosquitos have ever done for humanity,
那就是它们启发科学家设计出了微痛注射针头
it’s inspiring scientists to design less painful injection needles.
一只蚊子的口器 也就是它用来咬你的器官
A mosquito’s proboscis, the part it bites you with,
是由7个不同的活动部件组成的
is made up of seven different movable parts.
在吸血的时候 其中两个部件紧紧扒住皮肤
Two of those parts hold onto your skin,
还有两个部位悄悄锯开皮肤
while two more carefully saw through,
为“吸管”打开一个通道 这样吸管就可以伸进皮肤 把血吸出来
making way for the “straw” part to dive in and suck up your blood.
这个听起来确实挺可怕 但比起把针头硬扎进肉里 反而没那么疼了
I mean, it sounds horrible, but it is less painful than just jabbing into your skin.
在2008年 一个由印度和日本科学家组成的团队
So in 2008, a team of Indian and Japanese scientists
仿照雌蚊口器的尺寸
copied the size of a female mosquito proboscis
制作了一个微型针头 针头上附有一个小泵用于抽血
to make a tiny needle with a tiny pump to suck up blood.
这个针头的超小的尺寸以及附带的泵 使得被它扎一下确实不怎么疼
Its size, combined with the pump, makes getting poked practically painless.
到了2011年 又有一个团队
Then, in 2011, a second group copied three
仿制了那7个部件中的3个 造出了带马达的针头
of mosquitos’ seven moveable mouthparts to make a motorized needle
它在工作时 先后将两个微型锯子戳在皮肤上
that pokes first with one tiny saw, then the other,
同时通过微微振动 慢慢切入皮肤内部
while vibrating slightly to ease into the skin.
这就为一个尖细的吸管打开一条通路 吸管既可以抽血 也可以注药
That makes way for the sharp straw to draw blood or deliver medicine.
锯子的锯齿和普通针头相比
The serrated edges of the saws make less contact with your skin
与皮肤接触得较少 所以让人觉得不怎么疼
than a regular hypodermic needle, so you feel less pain.
还有什么动物为医疗行业提供灵感?
Another animal that’s helping with healthcare?
那就是 贻贝
The mussel.
贻贝能够使用自身分泌的胶 在水下紧紧粘在各种物体的表面
Mussels stick themselves to all kinds of underwater surfaces,
比如说 岩石 桥墩和船底
like rocks, piers, and boats, with glue that they make.
这种胶质不是简单的防水
And not only is this glue waterproof
它是实实在在地在水下使用 而且在粘结松动的时候 可以自我修复
it’ll actually set underwater, and repair itself if the bond is broken.
研究者已经找到了
Researchers studying mussel glue have identified
那几种让贻贝胶变得很粘的蛋白质
some of the specific proteins that make it stick,
这项研究也为所有新型胶水的开发提供了灵感
and the research has inspired all kinds of new glues,
比如一种用于制造胶合板的防水 低毒性胶水
like a new waterproof, less-toxic glue for plywood.
2014年 麻省理工学院的一个团队对大肠杆菌进行了基因改造
And in 2014, a team at MIT genetically engineered E. coli bacteria
使大肠杆菌在制造用于合成菌膜的蛋白质的同时
to produce some of the gluey proteins,
制造其中几种黏性蛋白
combined with the proteins the bacteria use to produce biofilm.
他们最终制造出一种和天然贻贝胶质一样 在水下使用的胶水
They ended up with a glue that works underwater, just like natural mussel glue.
目前 研究者一次只能制造很少的胶水
At this point the researchers can only make
但这些胶水最终可以用于任何目的
small amounts of the glue at a time, but the stuff could eventually be used
从修理船舶
for everything from repairing ships
到外科手术中的伤口黏合
to sticking people back together during surgery.
还有一个丹麦团队也在研究
There’s also a Danish team working on synthesizing a glue
基于贻贝的蛋白人工合成一种胶
based on mussel proteins
这种胶不仅能用于水下
one that does more than work underwater.
还能像贻贝胶一样自我修复
It also repairs itself like mussel glue.
贻贝胶含有一种能够紧紧扒在钢铁上的氨基酸
Mussel glue contains an amino acid that bonds very strongly to iron
其黏合力甚至强到即使黏合被损坏 它也能自动修复
so strongly that even if the bond is broken, it’ll re-form.
这个丹麦团队研究的胶水有同样的作用
The Danish researchers’ glue is designed to do the same thing.
这种胶水仍在研发中
The glue is still in development,
但终有一天 它也将在外科手术
but it’s the kind of thing that could also someday be useful for surgeries
和其他需要能够自我修复的防水胶的地方派上用场
or any other situation where you could use a waterproof glue that can fix itself.
不知道你们有没有近距离接触过鲨鱼
Now, I don’t know if you’ve ever gotten up-close-and-personal with a shark.
但如果你们想和鲨鱼来个亲密接触
But if you decided to pet one for some reason,
你肯定能发现它的皮肤粗得像砂纸
you’d probably notice that its skin is sandpaper-rough.
那是因为它全身布满了细小的齿状突起
That’s because it’s covered in tiny, tooth-like denticles,
这种构造既能保证鲨鱼快速游动 还能防止皮肤沾上寄生虫和细菌
which help sharks both swim faster and stay clean of parasites and bacteria.
这些齿状突起扰动了鲨鱼周围的水流
The denticles affect the flow of water around the shark,
这样能减小游动时 水的摩擦力
which reduces the friction as it moves through the water,
从而游得更快
allowing it to swim faster.
这种概念启发了高科技泳衣的发明
The concept has inspired high-tech swimsuits,
这种泳衣材料的表面有同样的小突起
where the fabric is designed to have the same kinds of tiny bumps.
同时研究者也在研究如何利用鲨鱼皮肤的适应性
And researchers are also working on ways to use shark skin’s adaptations
来保持船体的清洁和医院内物品的抗菌
to keep ships clean of clingers and hospitals surfaces safer from germs.
从微观上看 鲨鱼皮的齿状突起上依然布满了脊状突起
The microscopic surface of shark denticles is covered in ridges
这种突起的形状使得寄生虫和细菌很难附着在上面
whose shape makes it hard for parasites and bacteria to get a grip.
一家公司开发了一种材料 具有同样的表面结构
By copying that texture, one company created a material that,
与光滑表面相比
compared to a smooth surface,
这种表面结构上的金黄色葡萄球菌的数量减少了 94%
reduces the presence of MRSA bacteria by 94%.
鲸鱼和鲨鱼一样 也是游泳健将
Like sharks, whales are pretty great swimmers.
有几种鲸鱼皮肤上也有有用的突起
And some whales have bumps that help them out, too.
座头鲸在海中快速穿梭 捕食鱼群
Humpback whales zoom through the ocean hunting schools of fish.
但它们无法像蓝鲸吃浮游生物一样吞下满满一大口鱼
But they can’t just scoop up big mouthfuls like blue whales do with plankton,
因为鱼常常会在它们捕食的时候快速逃开
because fish tend to swim away when you try to eat them.
所以座头鲸使用一种叫做”气泡网捕食法”的技术进行捕食
So humpbacks use a technique called bubble net feeding.
它们挥动机翼一般巨大的鳍肢 绕着鱼群兜着小圈子
They use their giant flippers like airplane wings to swim in tight circles
同时吹出大量气泡 把鱼群紧紧聚在一起
while blowing bubbles, which concentrates the school of fish
然后座头鲸从下往上冲入鱼群 大口吞鱼
so the whale can just swim up through the middle and swallow them.
科学家曾经疑惑 那些长在座头鲸鳍肢前边缘上
That got scientists wondering why on earth there are knobs and bumps,
学名为结瘤的小瘤和小突起 到底有什么作用?
called tubercles, on the leading edge of humpback whales’ flippers.
原来这些小瘤和小突起之间的沟槽
It turns out that those knobs and bumps can make lots of flipper
能够像漏斗一样将水或者空气吸入
or wing-like things more efficient by funneling water or air
这就使得鳍肢和其他翼状物的效率变得更高
into the troughs between the bumps on the wing.
在风力发电机叶片上增加小突起
Putting the bumps on wind turbine blades lets them
可以使发电效率更高
turn more wind energy into electric energy.
在飞机机翼上增加小突起
And sticking them on airplane wings could make them more efficient
也可以提高效率 减少故障
and less likely to stall.
小突起也可以提高冲浪板的操控性
They could make surfboards more maneuverable,
并使风扇叶片转动起来更加安静 更加高效
and fan blades quieter and more efficient.
研究者正在试着把这种小突起装在各种东西上 并进行试验
Researchers are trying them out on everything
比如说 潜水艇上 皮划艇的船桨上
from submarines to kayak paddles.
海洋居民们还启发了另外一个关于风力发电机的创新
There’s another more wind turbine innovation inspired by marine inhabitants.
具体地说 风力发电机模仿了鱼群的组织方式
Specifically, it’s modeled after the way fish form schools.
那些学名为水平轴风力涡轮的风力发电机
Those tall wind turbines with blades
因为有着高大的身躯和叶片
known as horizontal axis wind turbines
所以互相不能靠得太近
can’t be too close to each other,
否则会互相影响空气动力学特性
or they interfere with each others’ air dynamics.
它们彼此离得越近 影响越严重
The closer together they are, the more they interfere,
这就会影响一定区域内的发电量
which limits the amount of energy they can produce over a given area of space.
但是鱼群内的鱼在游动时离得很近
But schooling fish swim very close together
也不会影响彼此身边的水流
without interfering with the water around each other,
这就使得科学家猜测 鱼类相关的物理学原理
which made scientists wonder if fishy physics
会不会成为缩小风电场面积的关键
could be the key to compact wind farms.
事实确实如此
And it is.
垂直轴风力涡轮使用更短的叶片
Vertical axis wind turbines are turbines with shorter blades
叶片以塔架为中心转动
that spin around the pole.
这种风力发电机的本身的发电能力
By themselves, these turbines
是弱于水平轴风力发电机的
generate less energy than horizontal axis turbines.
但是它们与空气的交互方式
But they interact with the air in a way that’s similar
和鱼群中的鱼与水的交互方式是相似的
to how schooling fish interact with water,
研究者利用这种相似性
and researchers have used the similarities to apply
将鱼群的排列方式运用在风力发电机的排列上
what they’ve seen in schooling fish to the way the turbines are arranged.
这就意味着风力发电机可以布放得更加紧密
That means the turbines can be packed closer together,
这样风电场占用的空间更少
which takes up less room so you can get more electricity
在已有的空间中就能生产更多的电能
out of the space you have available.
珊瑚是卓越的建筑工人
Coral are great builders.
珊瑚虫是一个个独立的小型动物
Tiny individual animals, called coral polyps,
它们通过生产碳酸钙(也叫做石灰石)
build up the structural skeleton of coral reefs by producing calcium carbonate,
建造出珊瑚礁的结构性骨架
otherwise known as limestone.
它们在建造过程中
And they use the carbon dioxide in ocean water
利用了海水中的二氧化碳
as part of their building process.
我们人类喜欢用混凝土建造各种东西
We humans like to build lots of things with concrete.
但是很不幸 混凝土的主要成分-水泥
But unfortunately for us and coral reefs and the whole planet,
每年在生产过程中产生的二氧化碳
manufacturing cement, a main ingredient in concrete,
占二氧化碳年排放总量的5%
produces about 5% of all the carbon dioxide
这对人类自身 珊瑚礁乃至整个地球都是有害的
we pump into the environment every year.
这个……一点也不好
Which is … not great.
但是一些公司
But inspired by the way corals build their skeletons,
受到珊瑚虫制造骨架的方式的启发
companies are working on ways to incorporate carbon dioxide
正在想办法在水泥和水泥板等建筑材料中加入二氧化碳
into building materials like cement and cement board.
正常情况下 制造1吨水泥会排放1吨二氧化碳
Normally, making a ton of cement produces about a ton of carbon dioxide.
但是在水泥中添加二氧化碳后二氧化碳排放量
But using carbon dioxide in the cement itself can reduce those emissions
被降低了5%-40%
by anywhere from 5 to 40%.
而且 还有惊喜!某些加入二氧化碳的建筑材料
And—bonus!—some of these CO2-infused building materials
比采用原配方的建筑材料的强度更高
are stronger than the original recipe.
不同的公司都开发出了不同版本的”绿色混凝土”
Different companies have created versions of this so-called “green concrete”,
但是现在他们仍在想办法完善这个生产工艺
but right now they’re still working on developing the process
以使其规模扩大
so it can be scaled up.
水熊可以
Waterbears do it.
含生草能做到
Jericho roses do it.
甚至啤酒酵母也可以
Even Brewer’s yeast does it.
我说的是细胞在脱水后存活的能力
I’m talking about the ability to survive your cells being dried out.
通常 细胞都不喜欢脱水
Usually, cells don’t like to be dried out.
它们一旦脱水 通常用死亡表示抗议
They lodge their complaints by dying.
再也活不过来了
Permanently.
但是某些细胞 比如水熊和含生草(又称为还魂草)的细胞
But some cells—like those of waterbears and Jericho roses,
可以对脱水淡然处之
aka “resurrection plants”—take it in stride.
想让他们活过来 补点水就可以了
To bring them back, you can just add water!
研究者通过研究发现 细胞死而复生的秘诀就是
Researchers studied this ability and found that the secret
细胞中的一种学名为海藻糖的糖类物质具有保护性
seems to be a protective sugar called trehalose
可以在细胞失水时保护细胞不被损坏
that allows cells to lose their water without being damaged.
海藻糖在医学上有应用前景 它可以用来保存疫苗
One potentially life-saving use for trehalose is to preserve vaccines,
因为疫苗在运输途中必须加以保护
which otherwise have to be protected from heat
以防止过热和脱水
and drying out while they’re being transported.
世界卫生组织推荐的所有疫苗
Every vaccine recommended by the World Health Organization
都要求避热保存
requires protection from heat,
这就使得疫苗的长距离运输十分困难且花费不菲
making hauling them long distances difficult and expensive.
这项研究进行了超过20年
Scientists have been working on this for over 20 years,
而且海藻糖是确定有效的
and it seems to really work.
2010年的一项研究中 使用海藻糖来保证一种流感疫苗的性质稳定
One 2010 study, for example, used trehalose to stabilize a flu vaccine
使得疫苗可以通过微针注射
so it would work with a microneedle
这样一来 即使是没接受过多少培训的人也可以给人注射疫苗了
that even someone with little or no training could use to deliver the vaccine.
研究者还发现 经过海藻糖稳定的流感疫苗
The researchers found that when they included trehalose
预防流感的效果更好
to stabilize the vaccine, it was more effective at protecting against the flu.
用”维可牢搭扣”粘东西看上去很简单
Velcro might seem like a simple way to stick things together.
但实际上 它是在上世纪40年代发明的
But it actually wasn’t invented until the 1940s, when a Swiss engineer
当时 一个名叫 George de Mestral 的瑞士工程师带着狗去打猎
named George de Mestral went on a hunting trip with his dog,
一种叫牛蒡的植物结出的刺果 紧紧挂在了他的裤子上和狗的皮毛上
and burrs from burdock plants got stuck to his pants and to his dog’s fur.
黏人的刺果困扰了人类几千年
Sticky burrs have probably been annoying people for thousands of years,
但是Mestra有了灵感
but they gave de Mestral an idea:
依照刺果发明一种可反复使用的粘胶怎么样?
What if he could use burrs to create a sort of reusable adhesive?
他决定把刺果放在显微镜下面
He decided to check out the burrs under a microscope,
然后他发现刺果表面布满了小钩子
and he saw that they were covered in tiny hooks,
这就解释了为什么刺果非常容易钩住其他物体
which explained why they were so great at sticking to stuff.
他仿照刺果的有刺的尖端
He recreated the hooked ends of the burrs,
设计出维可牢搭扣的有刺的那一部分
which became the rough half of the Velcro.
而较软的那一部分由无数个小圈组成 以供芒刺牢牢钩住
The other, softer side was made of loops for the hooks to grab onto.
到了上世纪50年代末 他申请了专利并开始销售这一发明
By the late 1950s, he’d patented and started selling his invention.
NASA(美国国家航空航天局)开始采购这种产品
And then NASA started buying it.
他们知道 在轨运行的航天器内的物品会由于失重而四处漂浮
They knew things would just sort of float around in orbit,
宇航员需要快捷地把东西固定在舱壁上保持不动
and astronauts needed an easy way to stick things to walls so they’d stay put,
同时又能很方便地取下来
but could also be easily detached.
维可牢搭扣能完美解决这个问题
Velcro was the perfect solution.
后来它又被用在运动装备
People also started using it for things like sports equipment
血压计袖带之类的东西上
and blood pressure cuffs.
当然也包括高端跑鞋
And, of course, awesome sneakers.
这都要归功于Mestral从烦人而黏人的刺果上得到的灵感
All because de Mestral was inspired by those annoying, sticky burrs.
感谢观看本集科学秀
Thanks for watching this episode of SciShow,
本节目由 Patreon 上的资助者资助播出
which was brought to you by our patrons on Patreon.
如果你想支持本节目 请访问 patreon.com/scishow
If you want to help support this show, just go to patreon.com/scishow.
别忘了访问 youtube.com/scishow 并订阅本节目
And don’t forget to go to youtube.com/scishow and subscribe!

发表评论

译制信息
视频概述

怎样设计无痛针头?怎样开发超强胶水?什么启发了高科技泳衣?怎样排列风力发电机?这一切问题的答案,都在大自然中。

听录译者

收集自网络

翻译译者

bangy.an

审核员

赖皮

视频来源

https://www.youtube.com/watch?v=YT5TZY-emYM

相关推荐