ADM-201 dump PMP dumps pdf SSCP exam materials CBAP exam sample questions

超高压下3件神奇的事 – 译学馆
未登录,请登录后再发表信息
最新评论 (0)
播放视频

超高压下3件神奇的事

3 Surprising Things Matter Does Under Extreme Pressure

科学秀视频由Brilliant.org网站提供 这是一家解惑网站
SciShow is supported by Brilliant.org – a problem-solving website
教你如何像物理学家 统计学家 或者数学家那样思考
that teaches you how to think like a physicist, statistician, or mathematician.
[开场音乐]
[♪♩INTRO]
压力 会让我们做出一些非常不可思议的事情
Pressure can make us do some pretty weird things,
它会让我们在做重要的报告时忘记自己的姓名
from forgetting our own names during a big presentation,
也会使我们对家族世仇之类的事情做出荒谬的反应
to giving ridiculous responses to Family Feud categories.
然而 压力并不只是让我们做荒唐事
But it doesn’t just make us kick our brains around the floor;
它会导致各种物质进行自身性质的转变
pressure causes all kinds of matter to go through identity crises –
就像一团鳞状石墨变成一颗钻石——
like when a lump of flaky graphite changes into a diamond,
地球上自然形成的最坚硬物质
the hardest naturally-occurring substance on Earth.
在极大的压力下 事情甚至会变得更加不可思议
And under extreme pressure, things get even weirder.
从个人经验或基础化学课程中你可能学过
Through personal experience or a basic chemistry class, you’ve probably learned that,
油和水静置时互不相溶
on their own, oil and water don’t mix
因为水分子对彼此的引力强于对油分子的引力
because the water molecules are way more attracted to each other than to the oil.
但结果发现 在适当条件下 它们确实溶合了
But it turns out that under the right conditions, they do mix.
其中一种条件就是高压
One of those conditions is a whole lot of pressure,
科学家能用一种叫做钻石对顶砧的设备(也叫DAC)制造出这种条件
which scientists can produce using a device called a Diamond Anvil Cell, or DAC,
该设备可用两个无瑕疵钻石的对顶面挤压物质
which squeezes things between the tips of two flawless diamonds.
依靠的是对那个狭小的实验区施加的压力
Depending on the force exerted over that teeny tiny experiment area,
DAC能造出你在地核才能发现的强大压力
DACs can produce as much pressure as what you’d find at the Earth’s core!
在今年《科学进展》发表的一项研究中
In a study published this year in the journal Science Advances,
科学家用DAC将水与液态甲烷
scientists used a DAC to combine water and liquid methane,
或四氢化碳溶合
or one carbon bonded to four hydrogens.
在化学意义上 液态甲烷和最简单的石油性质一样
In a chemistry sense, liquid methane acts like the simplest possible oil.
室温下 研究者将这两种液体溶合时
And at room temperature, the researchers got the two liquids to mix
用的是2兆帕的压强
when the pressure reached 2 gigapascals,
几乎相当于海平面气压的2000倍
or almost 20,000 times the air pressure at sea level.
研究者表示 两种化合物之所以能溶合
The researchers suggested the compounds could mix
是因为甲烷分子被压缩到一定程度
because the methane molecules got compressed to the point
就可以进入水分子组成的网状物中
where they could slip into the network of bonds connecting all the water molecules,
并能均匀地分布
and distribute themselves evenly.
甲烷和水广泛存在于太阳系
There’s methane and water all over the solar system,
包括内行星和卫星 它们都有着超高压强
including inside planets and moons, where the pressure can be super high.
因此在实验室研究二者在极端条件下的反应
So studying how they react under extreme conditions in the lab
有助于我们了解更多
can help us learn more about
人类无法触及的领域中进行着的化学过程
the chemistry going on in places it’s often impossible to visit.
然而并不是只有油和水才能在极大的压力下和睦共处
Oil and water aren’t the only things that play nice under extreme pressures, though.
惰性气体也可以
The noble gases do, too.
一般情况下 原子之间相互反应是为了使其最外层电子达到饱和
Normally, atoms react with each other to get a full outer shell of electrons,
因为那样它们才会最稳定
because that’s when they’re the most stable.
惰性气体是原子最外层电子已饱和的元素 所以 除非它们失去
Noble gases are elements that already have that shell filled,
一个电子 否则它们不需要与任何原子发生反应——
so unless they lose an electron, they don’t need to interact with anything —
强迫它们参与反应是很难的
and it’s very hard to force them to.
可是 含惰气元素的化合物会很实用
Still, compounds with noble gases in them can be useful,
需要从原子中移出电子
like for removing the electrons from an atom.
但是 除非在极端特殊的环境中 它们的存在通常是很短暂的
But unless they’re in an extreme environment, their existence is usually fleeting.
大多数情况下 你需要用相当高的压力去制造这些化合物
A lot of the time, you need to use really high pressures to create these compounds —
尤其是那些不依靠超低温的化合物
especially the ones that don’t rely on super low temperatures,
或包含额外惰性元素氖或氦的化合物
or that involve the extra inert elements neon or helium.
今年发表在《自然化学》上的一篇论文中说
In a paper published in Nature Chemistry this year,
研究者制造出了一种前所未有的含氦化合物 叫作氦化钠
researchers created a brand-new helium compound called sodium helide,
由一个氦原子和两个钠原子构成
which is one helium and two sodium atoms.
这种物质是用DAC制造的113兆帕的压强中形成的
It was formed inside a DAC at 113 gigapascals –
大致相当于外地核的压强
about as much pressure as just outside the Earth’s outer core.
这种化合物的晶体结构特别不错
The crystal structure of this compound is especially cool,
因为氦原子和钠原子的结合不像多数分子那样
because the helium and sodium atoms didn’t just link up like in most molecules.
相反 高压将氦原子和钠原子以类似3D立体棋盘的模式进行组合
Instead, the pressure arranged the helium and sodium into a kind of 3-D checkerboard pattern,
强迫电子对分开
forcing pairs of electrons to separate
基本上都单独悬浮于氦原子之间
and basically hang out on their own in between the helium atoms,
近似没有原子核的负离子
almost like a negatively charged ion without a nucleus.
根据电脑模型 氦化钠应该能在一千兆帕的压强下保持稳定
According to computer models, sodium helide should be stable up to a thousand gigapascals,
这么强的压强在大型气态巨星和恒星内部深处才能发现
which is what you’d find deep inside large gas giants and stars.
这不一定意味着在木星和土星内部有一大批外来的含惰气元素
That doesn’t necessarily mean there are a bunch of exotic noble gas compounds inside
的化合物 但随着研究不断深入 我们可能会知晓答案
Jupiter or Saturn, but with more research we might be able to figure out that out.
现在 科学家更加确定的一种存在于那些气态巨星中的奇异物质 就是
Now, there is one weird thing that scientists are far more confident exists inside those gas giants:
表现出金属性状 能导电的非金属元素
non-metal elements that behave like metals and conduct electricity.
电流就是一股电子流
An electric current is just a flow of electrons.
要让电子开始移动 它们需要具备足够的能量
And for electrons to start moving, they need to have the right amount of energy to leave
以离开其所属原子 并融入大量自由移动的电子
their parent atoms and join what’s basically a sea of moving electrons.
某些元素 如金属 其外层电子很容易获得这种能量
Some elements, like metals, have outer electrons that come by this energy super easily, so
它们就善于传导电荷
they’re good at conducting an electric charge.
另一方面 绝缘体的电子难以获得足够的能量
The electrons in insulators, on the other hand, have a tough time getting enough energy
去摆脱束缚进行流动
to break free and flow.
大多数非金属物质是绝缘体
Most nonmetals are insulators.
而足够高的压力下 原子受到挤压会产生大量
But at high enough pressures, the atoms can get squeezed into creating that communal sea
游离电子 使绝缘体变得能导电
of electrons, and the insulator becomes conductive.
这正是木星内部发生的事
That’s exactly what happens inside Jupiter.
如果你要直接冲向木星的大气层
If you were to plunge straight down through Jupiter’s atmosphere,
你很快就会被挤压致死 就像之前的伽利略号探测器一样 哦
you’d quickly get crushed to death like the Galileo probe before you. Oops.
但是如果用某种方式将压强降低至其三分之一 也就是
But if you somehow made it around a third of the way down,
100兆帕以上
where the pressure is more than 100 gigapascals,
你就会发现金属氢
you’d find metallic hydrogen,
这是一直存在于地核中的物质
which continues all the way to the core.
天文学家认为这种可导电的流体使木星有了
Astronomers think this conductive fluid is what gives Jupiter
超强磁场
its super strong magnetic field.
高压也能产生相反的效果 可能会使一些金属失去导电性
The effects of high pressure can also work in reverse,
或变成绝缘体
causing some metals to lose conductivity or become insulators.
在这样的事例中 不断升高的压强改变了固态金属的全部结构
In those cases, the increased pressure changes the solid metal’s overall structure,
将电子锁定在原子之间 使它们不能自由移动
locking the electrons up between atoms so they can’t flow freely.
所以 在极高的压力下能发生各种奇怪的事
So, all kinds of strange things can happen under extreme pressure.
通过研究这些 我们不断发现有越来越多的现象
And by studying them, we keep finding more ways
不符合物理化学中的常规原理
the usual rules of chemistry and physics don’t apply.
如果该段视频激发了你对科学的兴奋感
If this episode got you jazzed about science,
那么你可以把你的兴奋感转向另一个地方
there’s a place you can go to put that excitement to work.
Brilliant.org是一个解惑网站 会教你如何像物理学家
Brilliant.org is a problem-solving website that teaches you how to think like a physicist,
统计学家或数学家那样思考
statistician, or mathematician.
Brilliant上有简短 概念性的小测试 用以补充其他教学风格
Brilliant presents short, conceptual quizzes that supplement other instructional styles.
有一个很好的办法可以帮你记住从科学秀学到的知识 就是积极地在Brilliant上解决问题
A great way to retain what you have seen on SciShow is by actively solving problems on Brilliant.
每门课程都用交互式的图表和问题
Each course guides you through easy and challenging problems
引导你解决简单和复杂的问题
with interactive graphics and questions.
有一门课程名叫“解决问题的乐趣”
One course, The Joy of Problem Solving,
会带你用逻辑推理 辩证思考 代数和几何知识解决问题
takes you through problems in logic reasoning, critical thinking, algebra, and geometry.
当然 我是精通基础几何的
I, of course, am a wizard at basic geometry,
我几分钟就正确解答了这个问题
and it took me a few minutes to correctly answer this question.
出于好奇 我看了一下解法
Out of curiosity, I looked at the solution,
这个解法教我用不同的方法去解答此题
which walked me through different ways of solving the problem.
已经有400万人在用Brilliant
4 million people are already using Brilliant,
那就加入他们一起来强化你的STEM技术
so join them in sharpening your STEM skills.
要想支持科学秀并了解Brilliant的更多情况
To support SciShow and learn more about Brilliant,
就上brilliant.org/SciShow看看吧
go to brilliant.org/SciShow.

发表评论

译制信息
视频概述

在超高压条件下会有不可思议的现象发生,而这些现象是物理化学的常规原理无法解释的,我们学了这么多年的数理化是假的吗?NO,我们知道的太少了!!

听录译者

收集自网络

翻译译者

没有如果

审核员

审核员YX

视频来源

https://www.youtube.com/watch?v=aiUq5xksJy0

相关推荐